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One of the fundamental mathematical results in inequality measurement,
due to Hardy Littlwood and Pólya [2], states that a necessary and sufficient
condition for a vector y ∈ IRn

+ to majorize another vector x ∈ IRn
+ is the existence

of a doubly stochastic matrix Q such that x = yTQ. The standard proof of the
necessity of this condition is elementary but somewhat indirect. It first shows
that when y majorizes x it is possible to move from y to x by a finite sequence
of non-regressive transfers, and then notices that each one of these transfers
can be expressed by means of a simple doubly stochastic matrix. The desired
doubly stochastic matrix is then the product of these simple matrices.

In this note we offer a direct proof, based on the minimax theorem for
zero sum games. The idea of the proof is not new. It resembles the one used
by Blackwell [1] in his beautiful characterization of the at least as informative

relation on experiments.

Vectors are always n×1 matrices, namely columns. The inner product of two
vectors x, y is written x · y. For any x = (x1, . . . , xn) ∈ IRn

+ let x(1) ≤ · · · ≤ x(n)

denote the components of x in non-decreasing order.
For any x, y ∈ IRn

+ we say that x is majorized by y, denoted x 4 y if

k∑

i=1

x(i) ≥

k∑

i=1

y(i) k = 1, . . . , n− 1

n∑

i=1

x(i) =

n∑

i=1

y(i)

Or, equivalently, if

n∑

i=k

x(i) ≤

n∑

i=k

y(i) k = 2, . . . , n

n∑

i=1

x(i) =

n∑

i=1

y(i)
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We first prove the following preliminary result.

Lemma 1 Let x, y ∈ IRn
+ be two vectors such that x is majorized by y. Let

v ∈ IRn
+. Then, there is a permutation matrix P such that x · v ≤ yTPv.

Proof : Let Px be a permutation matrix that orders the components of x
comonotonically with v. That is, letting x̂ = xTPx, we have that (x̂i − x̂j)(vi −
vj) ≥ 0 for i, j = 1, . . . , n. Then, it can be checked that

x · v ≤ x̂ · v =

n∑

i=1

x̂ivi =

n∑

i=1

x(i)v(i).

Similarly, let Py be a permutation matrix that orders the components of y

comonotonically with v. That is, letting ŷ = yTPy, (ŷi − ŷj)(vi − vj) ≥ 0 for
i, j = 1, . . . , n and hence ŷ · v =

∑n

i=1 y(i)v(i). Then,

x · v ≤

n∑

i=1

x(i)v(i)

= v(1)

n∑

i=1

x(i) + (v(2) − v(1))
n∑

i=2

x(i) + · · ·+ (v(n) − v(n−1))x(n)

≤ v(1)

n∑

i=1

y(i) + (v(2) − v(1))

n∑

i=2

y(i) + · · ·+ (v(n) − v(n−1))y(n)

=

n∑

i=1

y(i)v(i)

= ŷ · v

= yTPyv

where the third line follows from the fact that x is majorized by y. The permu-
tation matrix Py is the one we are looking for. �

We can now proove the following.

Proposition 1 (Hardy, Littlewood and Pólya) Let x, y ∈ IRn
+ be two vectors.

There is a doubly stochastic matrix Q such that x = yTQ if and only if x 4 y.

Proof : For the only if part see Theorem A.2.4 in Marshall and Olkin [3].
For the if part let x, y ∈ IRn

+ and assume that x 4 y. Consider the following
two-person zero sum game. Player 1 chooses an n×n doubly stochastic matrix,
and player 2 chooses a vector v ∈ [0, 1]n. Denote by V the set of all such vectors
and by M the set of n× n doubly stochastic matrices. The payoff function for
player 1 is defined by

h(M, v) = (yTM − x) · v
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The sets V and M are compact and convex. Additionally, h is linear in each of
its arguments. Therefore, by the Nash equilibrium existence theorem (see [4],
Proposition 20.3), there is a doubly stochastic matrix M0 and a vector v0 such
that

h(M, v0) ≤ h(M0, v0) ≤ h(M0, v) ∀M ∈ M, ∀v ∈ V (1)

By Lemma 1, there is a permutation matrix P such that

h(P, v0) = (yTP − x) · v0 ≥ 0

Since permutation matrices are doubly stochastic, it follows from (1) that

0 ≤ h(M0, v) ∀v ∈ V

or
0 ≤ (yTM0 − x) · v ∀v ∈ V

Choosing v = (0, . . . , 0, 1, 0, . . . , 0) we obtain that the ith component of (yTM0−

x) satisfies (yTM0 − x)i ≥ 0. Since

n∑

i=1

xi =

n∑

i=1

yi =

n∑

i=1

(yTM0)i

we obtain
∑n

i=1(y
TM0 − x)i = 0. Hence (yTM0 − x)i = 0 for i = 1, . . . , n. In

other words, x = yTM0 and thus M0 is the doubly stochastic matrix that we
are looking for. �
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