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1 Introduction

This appendix proves the validity of Table 1 in Frankel and Volij [6], which is reproduced

below. We also show which of the major segregation indices satisfy two decomposability

properties.

SYM CI SI GDP SDP IND N CONT

1 Symmetric Atkinson: A(X)
√ √ √

×
√ √ √ √

2 Asymmetric Atkinson: Aw(X) ×
√ √

×
√ √ √ √

3 Weighted Atkinson: W (X)
√

×
√ √ √

×
√ √

4 Lexicographic Atkinson: <w,w′ ×
√ √

×
√ √ √

×

5 Negative Atkinson: −A(X)
√ √ √

× ×
√ √ √

6 Mutual Information: M(X)
√

×
√ √ √ √ √ √

7 Asymmetric Mutual Information: M(w1,w2) (X) × ×
√ √ √ √ √ √

8 Negative Mutual Information: −M (X)
√

×
√ √

×
√ √ √

9 Scaled Mutual Information: T (X) M (X)
√

× ×
√ √ √ √ √

10 Weighted Dissimilarity: DW (X)
√

2
√

×
√

×
√ √

11 Unweighted Dissimilarity: DU (X)
√ √ √

×
√

×
√ √

12 Trivial Index
√ √ √ √ √ √

×
√

13 Gini Index: G (X)
√

2
√

×
√

×
√ √

14 Entropy Index: H (X)
√

×
√

×
√ √ √ √

15 Normalized Exposure: NE(X)
√

×
√

×
√

2
√ √

16 Clotfelter Index: C (X) × ×
√

N/A ×
√ √

×

17 Card-Rothstein Index: CR (X) × ×
√

N/A × ×
√ √

Table 1: Which Indices Violate Which Axioms? A “
√

” means that the axiom is satisfied;

an “×” indicates that it is not. A “2” means that the axiom is satisfied only in the case of

two ethnic groups.

For definitions of the indices and the various properties, the reader is referred to Frankel

and Volij [6]. We make our claims explicit by means of the following propositions. Our

first proposition verifies the claims in the table.

Proposition 1 The characterization in Table 1 is correct.
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Our second proposition characterizes which of the decomposability properties are satisfied

by the major school segregation indices.

Proposition 2 Mutual Information Index satisfies Strong School and Group Decompos-

ability, while the Symmetric and Asymmetric Atkinson Indices, both Dissimilarity indices,

and the Gini, Entropy, and Normalized Exposure indices violate them. In addition, the

Clotfelter and Card-Rothstein indices violate Strong School Decomposability.1

2 Proof of Proposition 1

The reader can check that, with the exception of Scaled Mutual Information, none of the

indices in the table depend on the total district’s population. Therefore, they satisfy SI.

It is clear that Scaled Mutual Information does not satisfy SI, since for any district X

such that M(X) > 0, and for any α > 1 we have T (αX)M(αX) = αT (X)M(X) 6=

T (X)M(X). It is also straightforward to check that all indices except for the trivial index

satisfy Nontriviality.

It is immediate from the formulas for the various indices that all of them, except for

the asymmetric version of the Atkinson and Mutual information orderings, as well as the

lexicographic, the Clotfelter and the Card-Rothstein orderings, satisfy Symmetry.

All the orderings in the table with the exception of the lexicographic and the Clotfelter

orderings, are represented by a continuous function. Consequently, as a trivial corollary of

the following lemma we obtain that all of them, again with the exception of the above two,

satisfy Continuity.

Lemma 1 Any index that is a continuous function of the T ng ’s (the numbers of each group

g in each school n) represents an ordering that satisfies the axiom of Continuity.

1Strong Group Decomposability is not well defined for these indices, which apply only to a specific set of

ethnic groups.
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Proof. Let S be a segregation index. Assume that S is a continuous function of the T ng ’s.

Fix a district Z with group set G and school set N. The sets (−∞, S(Z)], and [S(Z),∞)

are closed in <. Consequently, the intersections of S−1((−∞, S(Z)]) and S−1([S(Z),∞))

with C (G,N) are closed in C (G,N). (For continuous functions, their inverse image

of closed sets are closed). But these are just the sets {X ∈ C (G,N) : X < Z} and

{X ∈ C (G,N) : Z < X}, respectively. Q.E.D.

The following example shows that the Clotfelter Index does not satisfy Continuity. Let

κ = .5 and let X (ε) = 〈(1− ε, 1) , (0, 1)〉 and Z = 〈(1, 0) , (1, 2)〉, where in each school

the first entry is the number of blacks. The set {X ∈ C (G,N) : Z < X} is not closed

since it contains X (ε) for all ε > 0 but does not include X (0), violating Continuity.

We now show that the lexicographic ordering does not satisfy Continuity. We will use

the following lemma.

Lemma 2 Let < be a segregation ordering that satisfies Continuity. Then for any districts

X, Y, Z ∈ C, the sets

A = {c ∈ [0, 1] : cX ] (1− c)Y < Z} and B = {c ∈ [0, 1] : Z < cX ] (1− c)Y }

are closed.

Proof. Let {ck} be a sequence of elements ofA that converges to c. Then, ckX](1−ck)Y is

a sequence of districts in {X ∈ C(G,N) : X < Z} that converges to cX](1−c)Y (where

G and N are the group and school sets of cX ] (1− c)Y ). Since {X ∈ C(G,N) : X < Z}

is closed, cX ] (1− c)Y < Z, which means that c ∈ A. A similar argument shows that B

is closed. Q.E.D.

Let X and Y be two districts with different group distributions such that Aw(X) =

Aw(Y ) < 1 and Aw′(X) < Aw′(Y ). Let c ∈ (0, 1) and consider the district cX ] (1 −

c)Y . Let γg = cTg(X)

cTg(X)+(1−c)Tg(Y )
and ηg = 1 − γg. Note that a proportion tng (X)γg of

group-g students of the district cX ] (1 − c)Y attend school n ∈ N(X). Likewise, a
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proportion tng (Y )ηg of group-g students of the district cX ] (1 − c)Y attend school n ∈

N(Y ). Therefore, we can write

1− Aw(cX ] (1− c)Y ) =
∑

n∈N(X)

∏
g∈G

(tng (X)γg)
wg +

∑
n∈N(Y )

∏
g∈G

(tng (Y )ηg)
wg

=
∑

n∈N(X)

∏
g∈G

(
tng (X)

)wg
(
γg
)wg

+
∑

n∈N(Y )

∏
g∈G

(
tng (X)

)wg
(
ηg
)wg

=

(∏
g∈G

(
γg
)wg

) ∑
n∈N(X)

∏
g∈G

(
tng (X)

)wg
+

(∏
g∈G

(
ηg
)wg

) ∑
n∈N(Y )

∏
g∈G

(
tng (Y )

)wg

= (1− Aw(X))
∏
g∈G

(
γg
)wg

+ (1− Aw(Y ))
∏
g∈G

(
ηg
)wg

.

Since the group distributions of X and Y are not the same, there are groups g, g′ ∈G

with γg 6= γg′ . (Otherwise, for all groups g, γg equals a constant λ, which implies
Tg(X)

Tg(Y )
= λ(1−c)

c(1−λ)
. Hence, X and Y must have the same group distribution, a contradic-

tion.) Therefore, the geometric average
∏
g∈G

(
γg
)wg is strictly lower than the corresponding

arithmetic average, and the same is true for
∏

g∈G
(
1− γg

)wg . As a result,

1− Aw(cX ] (1− c)Y ) < (1− Aw(X))
∑
g∈G

wgγg + (1− Aw(Y ))
∑
g∈G

wgηg.

(By assumption, Aw(X) and Aw(Y ) are strictly less than one.). Since Aw(X) = Aw(Y ),

and since c was arbitrary chosen from (0, 1), we obtain that Aw(cX ] (1− c)Y ) > Aw(Y )

for all c ∈ (0, 1). Consequently the set

{c ∈ [0, 1] : cX
⊎

(1− c)Y <w,w′ Y }

equals [0, 1), which is not closed. By Lemma 2, <w,w′ fails CONT.

For the rest of Table 1, we will proceed index by index.

2.1 Symmetric Atkinson

That the Atkinson indices satisfy the all the axioms except for GDP follows from Theorems

1 and 2.

5



GDP The symmetric Atkinson ordering does not satisfy GDP. Consider the districts X =

〈(2, 2), (0, 2)〉, and X ′ = 〈(2, 1, 1), (0, 1, 1)〉. The district X ′ is obtained from X by

subdividing the second group into two equally sized, and equally distributed groups.

It can be checked that A(X) = 1− 1/
√

2 while A(X ′) = 1− 1/22/3.

2.2 Asymmetric Atkinson

That the Atkinson indices satisfy the all the axioms except for GDP follows from Theorems

1 and 2. The previous example can be used to show that the Asymmetric Atkinson indices

do not satisfy GDP.

2.3 Weighted Atkinson

GDP The weighted Atkinson ordering satisfies GDP. Let X be a school district and let X ′

be the school district that is obtained from X by subdividing ethnic group g ∈ G(X)

into two identically distributed ethnic groups g1 and g2. Note that since Tg = Tg1 +

Tg2 , we have Pg = Pg1 + Pg2 . Also note that since both groups are identically

distributed across schools, we have tng1 = tng2 = tng for all n ∈ N . Consequently(
tng1
)Pg1 ×

(
tng2
)Pg2 =

(
tng
)Pg1 ×

(
tng
)Pg2 =

(
tng
)Pg

and as a result W (X) = W (X ′).

SDP The weighted Atkinson ordering satisfies SDP. let X ′ be the result of splitting school

n in district X into two schools, n1 and n2. Then W (X ′)−W (X) =
∏
g∈G

(
tng
)Pg −∏

g∈G

(
tn1
g

)Pg−
∏
g∈G

(
tn2
g

)Pg . Since
∑

g∈G Pg = 1, the above products are homogeneous

of degree one and concave functions of the vectors tn, tn1 , and tn2; since tn = tn1 +

tn2 , W (X ′)−W (X) ≥ 0. If the school distributions in n1 and n2 are the same, then

tn1
g = λtng and tn2

g = (1−λ)tng for all g, where λ = T n1/T n2 , soW (X ′)−W (X) = 0.

CI The weighted Atkinson index does not satisfy CI. Let X = 〈(2, 1), (1, 2)〉, and X ′ =

〈(2, 2), (1, 4)〉. It can be checked that W (X) 6= W (X ′).
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IND The weighted Atkinson index does not satisfy IND. To see this, consider the following

districts: X = 〈(1, 0), (1, 2)〉, Y = 〈(0, 1), (2, 1)〉, and Z = 〈(1, 0)〉. By symmetry

we have W (X) = W (Y ). However, it can be checked that W (X ]Z) < W (Y ]Z).

2.4 Lexicographic Atkinson

GDP The lexicographic Atkinson ordering does not satisfy GDP because the asymmetric

Atkinson orderings don’t.

SDP The lexicographic Atkinson ordering satisfies SDP because the Atkinson indices do.

CI The lexicographic Atkinson index satisfies CI because the Atkinson indices do.

IND The lexicographic Atkinson index satisfies IND because the Atkinson indices do.

2.5 Negative Atkinson

GDP The negative Atkinson ordering does not satisfy GDP because the symmetric Atkin-

son ordering doesn’t.

SDP The negative Atkinson ordering does not satisfy SDP because the symmetric Atkin-

son ordering does.

CI The negative Atkinson index satisfies CI because the symmetric Atkinson ordering

does.

IND The negative Atkinson index satisfies IND because the symmetric Atkinson ordering

does.

2.6 Mutual Information

That the mutual information ordering satisfies all the axioms except for CI follows from

Theorem 3. That it does not satisfy CI follows from Theorem 1 and the fact that the mutual

information and the symmetric Atkinson are not the same ordering.
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2.7 Asymmetric Mutual Information

GDP The Asymmetric Mutual Information ordering satisfies GDP. To see this, let X be

a school district and let X ′ be the school district that is obtained by splitting group

g ∈ G ∩ Ri into two identically distributed subgroups g1and g2 for some i = 1, 2.

Then,

Mw1w2(X)−Mw1w2(X
′) = wi[(k(Pg)−k(Pg1)−k(Pg2)−

∑
n∈N

πn
(
k(png )− k(png1)− k(p

n
g2

)
)
]

where k(q) = q log2(1/q). Letting α = Pg1/Pg and noting that α = png1/p
n
g for all

n ∈ N , we have

Mw1w2(X)−Mw1w2(X
′) = wi

 ∑n∈N π
n
(
α log2

1
α

+ (1− α) log2
1

1−α

)
−(

α log2
1
α

+ (1− α) log2
1

1−α

)


= 0

SDP The Asymmetric Mutual Information ordering satisfies SDP. To see this let X be a

district and let n be a school of X . Let X ′ be the district that results from dividing n

into two schools, n1 and n2. Since X and X ′ have the same group distribution,

Mw1w2(X
′)−Mw1w2(X) =

∑
i=1,2

(πnHi(p
n)− πn1Hi(p

n1)− πn2Hi(p
n2))

= πn
∑
i=1,2

(
H(pn)− πn1

πn
H(pn1)− πn2

πn
H(pn2)

)

But for all g, png = πn1

πn p
n1
g +πn2

πn p
n2
g so, recalling thatHi((qg)g∈G) =

∑
g∈G∩Ri

qg log2(
1
qg

)

is a concave function, Mw1w2(X
′) −Mw1w2(X) ≥ 0, with strict inequality only if

schools n1 and n2 have different group distributions.

CI The Asymmetric Mutual Information does not satisfy CI because the Mutual Informa-

tion ordering doesn’t.

IND The Asymmetric Mutual Information ordering satisfies IND. let X and Y have the

same size and group distribution, with groups 1, ..., K, and let Z be another district.
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Then X ] Z and Y ] Z have the same group distribution, which we denote by P .

Also, for each school n denote its group distribution by pn. Then,

Mw1w2(X ] Z) < Mw1w2(Y ] Z)

⇐⇒
∑
i=1,2

wi

Hi(P )−
∑

n∈N(X)

T n

T (X ] Z)
Hi(p

n)−
∑

n∈N(Z)

T n

T (X ] Z)
Hi(p

n)


≥

∑
i=1,2

wi

Hi(P )−
∑

n∈N(X)

T n

T (Y ] Z)
Hi(p

n)−
∑

n∈N(Z)

T n

T (Y ] Z)
Hi(p

n)


⇐⇒

∑
i=1,2

wi
∑

n∈N(X)

T nHi(p
n) ≤

∑
i=1,2

wi
∑

n∈N(X)

T nHi(p
n)

⇐⇒ Mw1w2(X) < Mw1w2(Y ).

2.8 Negative Mutual Information

GDP The Negative Mutual Information ordering satisfies GDP because the Mutual Infor-

mation ordering does.

SDP The Negative Mutual Information ordering does not satisfy SDP because the Mutual

Information ordering does.

CI The Negative Mutual Information ordering does not satisfy CI because the Mutual

Information ordering doesn’t.

IND The Negative Mutual Information ordering satisfies IND because the Mutual Infor-

mation ordering does.

2.9 Scaled Mutual Information

GDP The Scaled Mutual Information ordering satisfies GDP because the Mutual Informa-

tion ordering does.

SDP The Scaled Mutual Information ordering satisfies SDP because the Mutual Informa-

tion ordering does.
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CI The Scaled Mutual Information ordering does not satisfy CI because it does not satisfy

SI.

IND The Scaled Mutual Information ordering satisfies IND because the Mutual Informa-

tion ordering does.

2.10 Weighted Dissimilarity

GDP To see that the Weighted Dissimilarity ordering does not satisfy GDP, consider the

district X = 〈(0, 10) , (10, 0)〉 and the district Y = 〈(0, 0, 5, 5) , (5, 5, 0, 0)〉 that is

obtained after we split evenly each of X’s groups. It can be checked that DW (X) 6=

DW (Y ).

SDP The Weighted Dissimilarity ordering satisfies SDP. To see this, let X be a district and

let X ′ be the district that results from X if school n ∈ X is divided into two schools,

n1 and n2, and let α = T n1/T n. Then,

DW (X ′)−DW (X) =
1

2I

∑
g∈G(X)

(
πn1
∣∣pn1
g − Pg

∣∣+ πn2
∣∣pn2
g − Pg

∣∣− ∣∣png − Pg∣∣)
=

1

2I

∑
g∈G(X)

(
α
∣∣pn1
g − Pg

∣∣+ (1− α)
∣∣pn2
g − Pg

∣∣− ∣∣png − Pg∣∣)
Since png = αpn1

g + (1 − α)pn2
g and absolute value is a convex function, DW (X ′) −

DW (X) ≥ 0. Moreover, if n1 and n2 have the same group distributions, DW (X ′)−

DW (X) = 0.

CI The Weighted Dissimilarity ordering satisfies CI for two groups because it coincides

with the Unweighted Dissimilarity ordering. To see that it does not satisfy CI in gen-

eral, consider the following districts: X = 〈(9, 5, 1) , (1, 5, 9)〉 and Y = 〈(9, 5, 10) , (1, 5, 90)〉.

It can be checked that DW (X) 6= DW (Y ).

IND To see that DW violates IND, consider the following districts: X = 〈(9, 5) , (1, 5)〉,

Y = 〈(5, 9) , (5, 1)〉 and Z = 〈(6, 4)〉. Districts X and Y have the same population
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and group distribution. By symmetry of DW , DW (X) = DW (Y ). However, it can

be checked that DW (X ] Z) 6= DW (Y ] Z).

2.11 Unweighted Dissimilarity

GDP To see that the Unweighted Dissimilarity ordering does not satisfy GDP, consider the

district X = 〈(0, 10) , (10, 0)〉 and the district Y = 〈(0, 0, 5, 5) , (5, 5, 0, 0)〉 that is

obtained after we split evenly each of X’s groups. It can be checked that DU(X) 6=

DU(Y ).

SDP The Unweighted Dissimilarity ordering satisfies SDP. To see this, let X be a district

and let X ′ be the district that results from X if school n ∈ X is divided into two

schools, n1 and n2, and let α = T n1/T n. Then,

DU(X ′)−DU(X) =
1

2(K − 1)

∑
g∈G(X)

(∣∣∣∣∣tn1
g −

∑
g′∈G

1

K
tn1

g′

∣∣∣∣∣+
∣∣∣∣∣tn2
g −

∑
g′∈G

1

K
tn2

g′

∣∣∣∣∣−
∣∣∣∣∣tng −∑

g′∈G

1

K
tng′

∣∣∣∣∣
)

≥ 1

2(K − 1)

∑
g∈G(X)

(∣∣∣∣∣tn1
g + tn2

g −
∑
g′∈G

1

K

(
tn1

g′ + tn2

g′

)∣∣∣∣∣−
∣∣∣∣∣tng −∑

g′∈G

1

K
tng′

∣∣∣∣∣
)

=
1

2(K − 1)

∑
g∈G(X)

(∣∣∣∣∣tng −∑
g′∈G

1

K
tng′

∣∣∣∣∣−
∣∣∣∣∣tng −∑

g′∈G

1

K
tng′

∣∣∣∣∣
)

= 0.

Moreover, if n1 and n2 have the same group distributions, tn1
g = tn2

g for all g, and conse-

quently, DU(X ′)−DU(X) = 0.

CI The Unweighted Dissimilarity ordering satisfies CI since the corresponding index de-

pends only on the tng s.

IND To see that DU violates IND, consider the following districts: X = 〈(9, 5) , (1, 5)〉,

Y = 〈(5, 9) , (5, 1)〉 and Z = 〈(6, 4)〉. Districts X and Y have the same population

and group distribution. By symmetry of DU , DU(X) = DU(Y ). However, it can be

checked that DU(X ] Z) 6= DU(Y ] Z).
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2.12 Trivial index

It is obvious that this index satisfies all the axioms except for non-triviality.

2.13 Gini index

GDP To see that the Gini ordering does not satisfy GDP, consider the districtX = 〈(0, 10) , (10, 0)〉

and the district Y = 〈(0, 0, 5, 5) , (5, 5, 0, 0)〉 that is obtained after we split evenly

each of X’s groups. It can be checked that G(X) 6= G(Y ).

SDP The Gini ordering satisfies SDP. Let X be a district, let X ′ be the district that results

from X if school n ∈ X is divided into two schools, n1 and n2, and let α = T n1/T n.

We must show that G(X ′) ≥ G(X), with equality if the two schools have the same

group distribution. But

G(X ′)−G(X) =
1

I

G∑
g=1

T n1T n2

TT

∣∣∣∣T n1
g

T n1
−
T n2
g

T n2

∣∣∣∣
+

1

I

G∑
g=1

∑
m=1,...,N
m 6=n

 TmTn1

TT

∣∣∣Tm
g

Tm − T
n1
g

Tn1

∣∣∣+ TmTn2

TT

∣∣∣Tm
g

Tm − T
n2
g

Tn2

∣∣∣
−TmTn

TT

∣∣∣Tm
g

Tm −
Tn

g

Tn

∣∣∣


The first sum is nonnegative. The summand in the second line equals

Tm

TT

(∣∣∣∣T n1
Tmg
Tm
− T n1

g

∣∣∣∣+ ∣∣∣∣T n2
Tmg
Tm
− T n2

g

∣∣∣∣− ∣∣∣∣T nTmgTm − T ng
∣∣∣∣)

The arguments of the first two absolute value functions sum to the argument of the

third absolute value function. However, absolute value is a convex function. Hence,

the summand is nonnegative for all g. Moreover, if the two schools have the same

group distributions, then the arguments of the three absolute value functions are pro-

portional to each other and thus all of the same sign. So the summand is zero.

CI In the case of two groups, the Gini Index can be written asG(X) = 1
2

∑
n∈N(X)

∑
m∈N(X) |tn1 tm2 − tm1 tn2 |,

so it clearly satisfies CI. To see that it does not satisfy CI in general, consider the fol-

lowing districts: X = 〈(9, 5, 1) , (1, 5, 9)〉 and Y = 〈(9, 5, 10) , (1, 5, 90)〉. It can be

checked that G(X) 6= G(Y ).
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IND To see that G violates IND, consider the following districts: X = 〈(9, 5) , (1, 5)〉,

Y = 〈(5, 9) , (5, 1)〉 and Z = 〈(6, 4)〉. Districts X and Y have the same population

and group distribution. By symmetry of G, G(X) = G(Y ). However, it can be

checked that G(X ] Z) 6= G(Y ] Z).

2.14 Entropy

GDP The Entropy ordering does not satisfy GDP. To see this consider the district X =

〈(0, 10) , (10, 0)〉 and the district Y = 〈(0, 0, 5, 5) , (5, 5, 0, 0)〉 that is obtained after

we split evenly each of X’s groups. It can be checked that H(X) 6= H(Y ).

SDP The Entropy ordering satisfies SDP because the Mutual Information ordering does.

CI The Entropy ordering does not satisfy CI. Consider the following districts: X =

〈(2, 1) , (1, 2)〉 and Y = 〈(2, 2) , (1, 4)〉. It can be checked that H(X) 6= H(Y ).

IND The Entropy ordering satisfies IND. To see this, note that if X, Y are two districts

with equal populations and equal group distributions, then (a) E(X) = E(Y ) and

(b) X ] Z and Y ] Z have equal group distributions for all Z. Fact (b) implies

that E(X ] Z) = E(Y ] Z). Accordingly, H(X) − H(Y ) = M(X)−M(Y )
E(Y )

and

H(X ] Z)−H(Y ] Z) = M(X]Z)−M(Y ]Z)
E(X]Y )

. Hence, H satisfies IND as M does.

2.15 Normalized Exposure

GDP The Normalized Exposure ordering does not satisfy GDP. To see this consider the

district X = 〈(0, 10) , (10, 0)〉 and the district Y = 〈(0, 0, 5, 5) , (5, 5, 0, 0)〉 that is

obtained after we split evenly each ofX’s groups. It can be checked that NE(X) 6=NE(Y ).

SDP The Normalized Exposure ordering satisfies SDP. Let X be a district, let X ′ be the

district that results from X if school n ∈ X is divided into two schools, n1 and n2.
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Then

NE(X ′)−NE(X) =
G∑
g=1

1

1− Pg
[
πn1(pn1

g − Pg)2 + πn2(pn2
g − Pg)2 − πn(png − Pg)2

]
.

Let α = πn1/πn. The expression between brackets is nonnegative iff

αx2 + (1− α) y2 ≥ z (1)

where x = pn1
g −Pg, y = pn2

g −Pg, and z = png −Pg. Since αx+ (1− α) y = z, (1)

holds iff

αx2 + (1− α)y2 ≥ (αx+ (1− α) y)2

= α2x2 + (1− α)2y2 + 2α (1− α)xy

which holds iff

(1− α)αx2 + α(1− α)y2 ≥ 2α(1− α)xy

which is true since (x− y)2 ≥ 0. Therefore, NE(X ′)−NE(X) ≥ 0. If schools n1

and n2 have the same group distribution, then pn1
g = pn2

g = png so NE(X ′)−NE(X) =

0.

CI The Normalized Exposure ordering does not satisfy CI. Consider the following dis-

tricts: X = 〈(2, 1) , (1, 2)〉 and Y = 〈(2, 2) , (1, 4)〉. It can be checked that NE(X) 6=NE(Y ).

IND To see why IND is satisfied with two groups, let X, Y ∈ C be two districts with

two groups, equal total size, and equal group distributions. Then for all districts

Z with the same set of groups, we must show that NE(X) ≥NE(Y ) if and only if

NE(X ] Z) ≥NE(Y ] Z). Since T (X) = T (Y ) and Tg(X) = Tg(Y ) for all g,

NE(X) ≥ NE(Y )⇐⇒
∑
g∈G

∑
n∈N(X)

T n

(
Tn

g

Tn − Tg(X)

T (X)

)2

T (X)− Tg(X)
≥
∑
g∈G

∑
m∈N(Y )

Tm

(
Tm

g

Tm − Tg(Y )

T (Y )

)2

T (Y )− Tg(Y )

but T n2 = T n − T n1 and T2(X) = T (X)− T1(X), so(
T n2
T n
− T2(X)

T (X)

)2

=

(
T n1
T n
− T1(X)

T (X)

)2

14



and similarly, (
Tm2
Tm
− T2(Y )

T (Y )

)2

=

(
Tm1
Tm
− T1(Y )

T (Y )

)2

so that

NE(X) ≥ NE(Y )⇐⇒
∑

n∈N(X)

T n
(
T n1
T n
− T1(X)

T (X)

)2

≥
∑

m∈N(Y )

Tm
(
Tm1
Tm
− T1(X)

T (X)

)2

⇐⇒
∑

n∈N(X)

T n

((
T n1
T n

)2

− 2
T n1
T n

T1(X)

T (X)
+

(
T1(X)

T (X)

)2
)

≥
∑

m∈N(Y )

Tm

((
Tm1
Tm

)2

− 2
Tm1
Tm

T1(X)

T (X)
+

(
T1(X)

T (X)

)2
)

⇐⇒
∑

n∈N(X)

(T n1 )2

T n
≥

∑
m∈N(Y )

(Tm1 )2

Tm

(In the first line we have eliminated the common factor 1
T1(X)

+ 1
T2(X)

and used the

fact that T1(X) = T1(Y ) and T (X) = T (Y ).) A similar argument shows that

NE(X ] Z) ≥ NE(Y ] Z)

⇐⇒
∑

n∈N(X)

T n
(
T n1
T n
− T1(Z ]X)

T (Z ]X)

)2

≥
∑

m∈N(Y )

Tm
(
Tm1
Tm
− T1(Z ]X)

T (Z ]X)

)2

⇐⇒
∑

n∈N(X)

(T n1 )2

T n
≥

∑
m∈N(Y )

(Tm1 )2

Tm

so NE satisfies IND in the case of two groups. IND is violated when there are

more than two groups. A simple 3-group example suffices to show this. Let

X = {(0, 2, 3) , (6, 4, 3)}, Y = {(3, 2, 0) , (3, 4, 6)}, and Z = {(0, 10, 100)}. Then

NE(X) =NE(Y ) since NE satisfies SYM, but one can verify that NE(X]Z) 6=NE(Y ]

Z).

2.16 Clotfelter

GDP It is not clear how to generalize this ordering to districts with more than two groups.
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SDP The Clotfelter ordering does not satisfy SDP. To see this, suppose the one-school dis-

trict X contains the school n in which the proportion minority is exactly κ. Assume

there is more than one minority student in n. Suppose a new school is built and

a single minority student from n is moved to that school. The effect of this is to

remove T n2 −1 minority students from the sum in the definition of the index. Hence,

the index falls, violating SDP.

CI The Clotfelter ordering does not satisfy CI. Consider the following districts: X =

〈(2, 1) , (1, 2)〉 and Y = 〈(2, 2) , (1, 4)〉. It can be checked that C(X) 6= C(Y ).

IND The Clotfelter ordering satisfies IND. To see this, let X, Y ∈ C be two districts with

equal populations and equal group distributions. It is enough to show that for any

district Z that contains a single school, C(X) ≥ C(Y ) if and only if C(X ] Z) ≥

C(Y ] Z). Since T2(X) = T2(Y ),

C(X) ≥ C(Y )⇐⇒ 1

T2(X)

∑
n∈N(X):pn

2≥κ

T n2 ≥
1

T2(X)

∑
n∈N(Y ):pn

2≥κ

T n2

⇐⇒ 1

T2(X) + T2(Z)

∑
n∈N(X]Z):pn

2≥κ

T n2 ≥
1

T2(X) + T2(Z)

∑
n∈N(Y ]Z):pn

2≥κ

T n2

⇐⇒ C(X ] Z) ≥ C(Y ] Z).

2.17 Card-Rothstein

GDP It is not clear how to generalize this ordering to districts with more than three groups.

SDP The Card-Rothstein ordering does not satisfy SDP. To see this, consider the single

school district X = 〈(2, 2, 4)〉, and the district Y = 〈(1, 0, 4) , (1, 2, 0)〉 which is

obtained after splitting that school in two. It can be checked that CR(X) = 0 while

CR(Y ) = −1/15.

CI The Card-Rothstein ordering does not satisfy CI. Consider the following districts: X =

〈(9, 5, 1) , (1, 5, 9)〉 and Y = 〈(9, 5, 10) , (1, 5, 90)〉. It can be checked that CR(X) =

16/75 while CR(Y ) = 7/48.
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IND The Card-Rothstein ordering does not satisfy IND. To see this, letX = 〈(2, 4, 6) , (6, 4, 2)〉,

Y = 〈(4, 2, 1) , (4, 6, 7)〉 and Z = 〈(0, 2, 5)〉. It can be checked that CR(X) =

1/12 < CR(Y ) = 10/119 while CR(X ] Z) = 3/20 > CR(Y ] Z) = 88/595.

Q.E.D.

3 Proof of Proposition 2

To see thatM satisfies SSD, letX = X1]· · ·]XK be a district composed ofK subdistricts.

By definition of M , M(X) = H(P (X)) −
∑K

k=1

∑
n∈N(Xk) π

nH(pn). Subtracting and

adding
∑K

k=1 π
kH(P (Xk)) on the right hand side, we obtain

M(X) = H(P (X))−
K∑
k=1

πkH(P (Xk)) +
K∑
k=1

πkH(P (Xk))−
K∑
k=1

∑
n∈N(Xk)

πnH(pn)

= H(P (X))−
K∑
k=1

πkH(P (Xk)) +
K∑
k=1

πk

H(P (Xk))−
∑

n∈N(Xk)

πnH(pn)


= M(c(X1) ] · · · ] c(XK)) +

K∑
k=1

πkM(Xk),

so M satisfies SSD. That M satisfies SGD follows from symmetry of mutual information

(Cover and Thomas [5, pp. 18 ff.]).

We now show that the other orderings violate SSD. Let S satisfy SSD. Let X and Y

have the same size and ethnic distribution, and let Z be another district. Then c(X) = c(Y )

and T (X)/T (X ] Z) = T (Y )/T (Y ] Z) = p. Then, applying SSD, S (X ] Z) ≥

S (Y ] Z) if and only if

S (c(X) ] c(Z)) + pS(X) + (1− p)S(Z) ≥ S (c(Y ) ] c(Z)) + pS(Y ) + (1− p)S(Z)

⇔ S(X) ≥ S(Y )

Hence, S also satisfies IND. By Table 1, both Dissimilarity indices, and the Gini, Nor-

malized Exposure, and Card-Rothstein indices violate SSD. As for the Atkinson, Entropy,
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and Clotfelter indices, consider the district X ] Y where X = 〈(α, 0) , (0, 1− α)〉 and

Y = 〈(1− α, 0) , (0, α)〉. All three indices take the value one on X , on Y , and on X ] Y .

In addition, for some values of α, they all take strictly positive values on c (X) ] c (Y ).

(For the Clotfelter index, it suffices for α to exceed the threshold κ. For the other two

indices, it is enough that α 6= 1/2.) Hence, they also violate SSD.

We now turn to SGD. Suppose S satisfies SGD and assigns the value zero to any district

in which all schools are representative. Let X ∈ C be a district in which the set of ethnic

groups is G. Let X ′ be the result of partitioning some ethnic group g ∈G into two ethnic

groups, g1 and g2, such that both ethnic groups have the same distribution across schools:
Tn

g1

Tg1
=

Tn
g2

Tg2
for all n ∈ N. Let X̂ be the result of removing all groups except g1 and g2 from

district X ′. Then by SGD,

S (X ′) = S (X) +
Tg
T
S
(
X̂
)

= S (X)

Accordingly, the ordering represented by S satisfies GDP. Since the indices other than

M violate GDP (and equal zero on districts in which all schools are representative), they

violate SGD as well. Q.E.D.
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