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1 Introduction

A match is a recursive zero-sum game with three possible outcomes: player 1 wins,

player 2 wins, or the game never ends. Play proceeds by steps from state to state. In

each state players play a “point” and move to the next state according to transition

probabilities jointly determined by their actions. Examples of matches include tennis,

penalty shootouts and, you will forgive the repetition, chess matches.1 In a chess match,

two players play a sequence of chess games until some prespecified score is reached.

For instance, the Alekhine–Capablanca match played in 1927 took the format known as

first-to-6 wins, according to which the winner is the first player to win six games. Some

matches are finite horizon games. As an example we have a best-of-seven playoff series.

Indeed, this match will necessarily end in at most seven stages. A penalty shootout,

on the other hand, is an infinite horizon game. It will never end if, for instance, every

penalty kick is scored. Similarly, a first-to-6-wins chess match is also an infinite horizon

game.2 Matches can further be classified into binary and non-binary games. A penalty

shootout is an example of the former and a chess match of the latter. The reason is

that while each penalty kick has only two outcomes, either the goal is scored or it is not

scored, a chess game may also end in a draw.

Matches have been the object of several empirical studies. For instance, Walker and

Wooders [14] and Gauriot, Page and Wooders [4], using data on tennis, and Palacios-

Huerta [7] using data on penalty kicks, show that players’ behavior is broadly consistent

with the minimax hypothesis. Specifically, they show that professional players regard

each point game as a one-shot zero-sum game and that their play is consistent with

its equilibrium. On the other hand, Apesteguia and Palacios-Huerta [1] observe a first-

kicker advantage in penalty shootouts and Gonzalez-Dı́az and Palacios-Huerta [5] find a

1The game of chess itself is also a match. In fact, in the first article to appear on game theory,
Zermelo [16] models chess as a zero-sum recursive game.

2The 1984 Karpov-Kasparov match lasted five months and was aborted after 48 games when the
partial score was 5-3. Coincidentally, the longest penalty shootout to date also had 48 kicks.
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similar anomaly in chess matches. This last paper also offers a brief theoretical analysis

of a particular finite chess match.

A theoretical foundation of Walker and Wooders [14] appears in Walker, Wooders

and Amir [15]. They define the class of binary Markov games and model tennis as one

such game. They show that under a certain monotonicity condition, minimax behavior

in each of the point games constitutes an equilibrium of the whole match. Namely,

by maximizing the lowest probability of his scoring each point, each player is best re-

sponding to the other player’s also maximizing the lowest probability of his scoring each

point. This result implies that as long as the monotonicity condition holds, binary

Markov games have stationary equilibria that dictate behavior that depends only on the

current point game and therefore is independent of the structure of the match.

Walker, Wooders and Amir [15] define a binary Markov game as a binary match in

which never-ending play is the worst outcome for both players, a feature that renders

their matches non-zero sum games. An alternative way to model matches is to view them

as standard recursive games as defined by Everett [2]. A recursive game is a stochastic

game where non-zero payoffs are obtained only at absorbing states. In other words, in

a never-ending play players get a payoff of 0. Besides being a natural way to model

matches,3 an advantage of this approach is that one can apply well-established results

from the theory of zero-sum stochastic games.

In this paper we model matches as zero-sum recursive games and focus on those

whose point games have three possible outcomes: player 1 scores the point, player 2

scores the point, or (something that happens with probability less than 1) the point

is drawn, in which case the point game is repeated. We call these games quasi-binary

matches. The results we obtain extend those of Walker, Wooders and Amir [15]. We

show that a value of a draw can be attached to each state so that quasi-binary matches

always have an easily-computed stationary equilibrium which prescribes minimax play

3In his article on the game of chess, Zermelo [16] states: “Such a possible endgame q can find its
natural end in a “checkmate” . . . , but could also – at least theoretically – go on forever, in which case
the game would without doubt have to be called a draw . . . ” (see Schwalbe and Walker [9]).
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in the point games induced by these values. Moreover, the value of a draw attached

to a given state depends only on the point played in it and as a result equilibrium

behavior at that state is independent of the structure of the match. We can conclude

then that Walker, Wooders and Amir’s [15] results extend to quasi-binary games and

thus are robust to the modeling choice concerning payoffs at infinite plays. Moreover, the

extension applies to all quasi-binary games and not just those which satisfy a restrictive

monotonicity condition.

For binary matches where minimax play induces a finite history with probability

one, it is not surprising that both modeling choices yield the same result. After all, as

Walker, Wooders and Amir [15] remark (see their footnote 8), in this case binary Markov

games are zero-sum games with probability one. What we show is that the conclusions of

Walker, Wooders and Amir’s equilibrium and minimax theorems continue to hold even

if minimax play induces infinite histories with positive probability, as long as matches

are modeled as zero-sum games.

Quasi-binary games are a modest extension of binary games. Indeed, whereas they

allow for a draw in their component point games, they impose that the point game be

repeated after a draw. Also, for any pair of actions, the probability of a draw must be

less than one. However, if we tried to further extend this class of games, our results

would fail to be valid, as shown by two examples we offer in the paper. Additionally,

a nice feature of quasi-binary games is that the concept of the value of a draw, which

turns out to be helpful for the interpretation of the equilibrium, emerges naturally there.

In order to describe these equilibria, note that since in a quasi-binary game the

probability of staying in the current state, say k, is less than one, players will eventually

move to one of two different states. Label them w(k) and ℓ(k). If they move to w(k) we

say that player 1 wins the point and if they move to state ℓ(k) we say that player 1 loses

the point. Finally, if they stay in the current state we say that the point is drawn. Note

that since there are two different states to which players can move from state k, there

are two different ways to select a labeling. Even so, once a labeling is chosen, we can
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define a simple zero-sum matrix game as follows. First we assign a value ek to the draw

in the current state and then we define the payoffs to player 1 as his expected earnings

when winning the point is worth 1, losing the point is worth 0, and a draw is worth ek.

In this paper we show that there is a labeling w(k), ℓ(k) of the successors of each state k,

and a value ek of the draw in the respective point games such that minimax play in the

above zero-sum matrix games constitutes an equilibrium of the match. We also show

that if the game satisfies a mild monotonicity condition, namely that there is no state

at which in equilibrium players are indifferent between the two states they can move to,

every stationary equilibrium of the match prescribes minimax play in these zero-sum

games.

It is worth noting that the conclusion of our main result is not valid for all of Walker,

Wooders and Amir’s binary Markov games. Indeed, we provide an example at the end of

the paper of a binary Markov game for which, no matter how we interpret the outcomes

of the point games, minimax play does not necessarily lead to an equilibrium of the

game.

The paper is organized as follows. Section 2 offers a motivating example and intro-

duces the basic definitions. Section 3 defines the concept of the value of a draw and

shows that it satisfies some interesting properties. In Section 4 we formulate and prove

the results.

2 Matches

2.1 A motivating example

Before we introduce the formal model, we illustrate the main result by means of the

following simple match. Two players play a sequence of 2× 2 “simplified chess” games.

Each game may end in a victory for either player or in a draw. The winner earns one

point and the match ends as soon as the score difference is either 2 or -2. Formally,

there are three non-absorbing states, 1, 0, and -1, corresponding to each partial score,
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and two absorbing states, 2 and -2. Let’s adopt the labeling according to which when

player 1 wins the chess game played at state k, for k = 1, 0,−1, play moves to state

k + 1, and when he loses it there is a transition to k − 1. When the partial score is 0

player 1 plays with the white pieces and the chess game is governed by the following

matrix of probabilities:

PW =





(2
3
, 1
3
, 0) ( 8

27
, 1
3
, 10
27
)

(0, 1
2
, 1
2
) (2

3
, 1
3
, 0)



 .

Each entry displays the probabilities of player 1 winning, drawing or losing the point

when the corresponding actions are chosen.4 For instance, when player 1 chooses his first

action and player 2 chooses his second action, player 1 wins the point with probability

8/27, loses the point with probability 10/27, and there is a draw with probability 1/3.

As soon as one of the players wins the point and the partial score becomes 1 or -1, they

go on to play a new chess game in which player 1 has the black pieces. Correspondingly,

this new game is governed by the following matrix of probabilities:

PB =





(0, 1
3
, 2
3
) (1

2
, 1
2
, 0)

(10
27
, 1
3
, 8
27
) (0, 1

3
, 2
3
)



 .

Here too, the entries are the probabilities that player 1 wins, draws or loses the point

when the corresponding action pair is chosen. Players continue playing this game until

one of them wins the point. If the player who has the score advantage wins the point

the match ends. If the player with the score disadvantage wins the point, the partial

score becomes 0 again and they go back to playing a chess game where player 1 has the

white pieces.

Although matrices PW and PB represent the strategic interaction involved in each of

the chess games, they themselves are not games. In order to transform them into games

4We are aware that in real chess, the outcome of a pair of strategies is deterministic. We hope chess
enthusiasts will forgive this distortion.
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we need to specify the proportion of the point at stake a draw represents. Consider

for instance the matrix PW . If a draw is worth ε ∈ [0, 1] of a point, then by taking

the expected value of the point earned by player 1, PW can be transformed into the

following matrix game:

PW (ε) =





2
3
+ 1

3
ε 8

27
+ 1

3
ε

1
2
ε 2

3
+ 1

3
ε



 .

Routine calculations show that the value of this matrix is 24+16ε−3ε2

56−9ε
, and that in par-

ticular when ε = 2/3 the value of the matrix is also 2/3. Namely, 2/3 is a fixed point

of the function that assigns to each ε ∈ [0, 1] the value of PW (ε). We call this fixed

point the value of the draw when player 1 plays with the white pieces, and we call the

corresponding matrix PW (2/3) the associated point game. One can also check that the

equilibrium strategies of this point game are ((3/5, 2/5), (2/5, 3/5)).

Similarly, one can check that when the draw in the chess game governed by PB is

worth ε of a point, the associated matrix game is

PB(ε) =





2
3
ε 1

2
+ 1

2
ε

10
27

+ 1
3
ε 1

3
ε





and that the value of this game when a draw is worth 1/3 of a point is also 1/3. In other

words, the value of a draw when player 1 plays with black is 1/3, and the associated

point game is PB(1/3). Furthermore, equilibrium strategies of the associated point game

PB(1/3) are ((2/5, 3/5), (3/5, 2/5)).

Our main result will imply that choosing the mixed action (3/5, 2/5) when playing

with the white pieces, and choosing the mixed action (2/5, 3/5) when playing with the

black pieces is an optimal strategy for each of the players in the match. Furthermore,

our second result shows that the corresponding pair of strategies is the only stationary

equilibrium of the match. Notice that this equilibrium dictates that in each point game

players should behave in a way that depends only on the chess game played. In particular,
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since when the partial score is 1 or -1 the chess games played are the same, equilibrium

behavior is also the same. Also notice that we have been able to compute the equilibrium

actions in each state using only the matrix of probabilities that is relevant to that state.

Next section starts with the formal model, which extends the analysis of the foregoing

example to all quasi-binary matches.

2.2 Basic definitions

Consider the following zero-sum stochastic game, which we call a match. There are

two players, 1 and 2, and a set of states S = {0, 1, . . . , K + 1}. States 0 and K + 1 are

absorbing states which if reached the match ends. In state k ∈ S, the actions available to

players 1 and 2 are labeled by the integers 1, . . . , Ik and 1, . . . , Jk, respectively. Without

loss of generality we assume that for all k, Ik = I and Jk = J and denote the action sets

of player 1 and 2 by I and J , respectively. Players are endowed with action sets in states

0 and K+1 only for notational convenience. A mixed action for player 1 is a probability

distribution over I and a mixed action for player 2 is a probability distribution over J .

We denote the sets of mixed actions of player 1 and 2 by ∆I and ∆J , respectively. For

any I × J matrix game A, val(A) denotes its value. A mixed action x ∈ ∆I is said

to be optimal for player 1 in A if it guarantees that he gets a payoff of at least val(A).

Similarly, a mixed action y ∈ ∆J is said to be optimal for player 2 in A if it guarantees

that player 1 gets a payoff of at most val(A). Recall that for A = (aij|i ∈ I, j ∈ J ) and

B = (bij|i ∈ I, j ∈ J ), |val(A)− val(B)| ≤ maxij |aij − bij| and that if bij = αaij + β for

some α > 0 and β ∈ IR and for all i ∈ I and j ∈ J , then val(B) = α val(A) + β.

For each state k ∈ S there is a matrix

P k = (pkij|i ∈ I, j ∈ J )

of probability distributions on the set of states S. Namely, for each pair of actions i, j
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of player 1 and 2, respectively, pkij = (pkk
′

ij )k′∈S where

pkk
′

ij ≥ 0 and
∑

k′∈S

pkk
′

ij = 1.

Matrices P 0 and PK+1 are introduced for notational convenience; since states 0 and

K + 1 are absorbing, p00ij = pK+1,K+1
ij = 1 for all i ∈ I and j ∈ J . We will henceforth

refer to P k as the point matrix at k.

The interpretation of the match is as follows. In state k = 1, . . . , K, after player 1

chooses an action i ∈ I and player 2 chooses an action j ∈ J they move to state k′ ∈ S

with probability pkk
′

ij . If state 0 is reached the match ends and player 1 wins. If state

K +1 is reached, the match ends and player 2 wins. If neither state 0 nor K +1 is ever

reached, the match is drawn. The payoffs are undiscounted; the timing of a victory or

a defeat does not affect preferences.

In order to define the match we need to specify the initial state and, for each player,

his set of available strategies and his payoff function. But first we need some definitions.

The set of histories of length t = 0, 1, 2, . . . is denoted by Ht = S × (I × J × S)t. A

typical history of length t is ht = (s0, (i1, j1, s1), . . . , (it, jt, st)) ∈ Ht. Here, the initial

state is s0 ∈ S and at stage τ = 1, . . . t, players chose actions iτ and jτ as a result of

which the state becomes sτ . By the end of ht, the state is st. The set of all finite histories

is denoted by H = ∪t≥0Ht.

A player’s strategy is a specification of a mixed action for each stage conditional on

the current state and on the history of play up to that stage. Formally, a strategy for

player 1 is a map χ : H → ∆I that prescribes a mixed action χ(ht) = (χ1(ht), . . . , χI(ht))

to be used by player 1 after every finite history ht. Similarly, a strategy for player 2

is a map ψ : H → ∆J that prescribes a mixed action ψ(ht) = (ψ1(ht), . . . , ψJ(ht)) to

be used by player 2 after every finite history ht. Stationary strategies are strategies

whose prescriptions depend only on the current state. Thus, a stationary strategy for

player 1 can be represented by a vector ~x = (x0, . . . , xK+1), where for each k ∈ S,
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xk = (xk1, . . . , x
k
I ) is a mixed action for player 1. Similarly, a stationary strategy for

player 2 is a vector ~y = (y0, . . . , yK+1) of mixed actions for player 2. We denote the sets

of strategies for players 1 and 2 by X and Y , respectively, and their subsets of stationary

strategies by ~X and ~Y . Given an initial state k ∈ S, a pair of strategies χ and ψ induces

a probability distribution on the histories of length t as follows. For histories h0 ∈ H0,

of length 0,

πχ,ψk (h0) =







1 if h0 = k

0 otherwise.

And for histories of length t = 1, 2, . . . this probability distribution is defined inductively

as follows. For ht = ht−1 ◦ (it, jt, st),

πχ,ψk (ht) = πχ,ψk (ht−1)χit(ht−1)ψjt(ht−1) p
st−1st
itjt

.

Consequently, given an initial state k and a pair of strategies χ and ψ the probability

that at stage t = 1, 2, . . ., the current state is k′ is given by

µkk
′

t (χ, ψ) =
∑

{ht∈Ht:st=k′}

πχ,ψk (ht). (1)

Since states 0 and K + 1 are absorbing, the probability sequences {µk0t (χ, ψ)}∞t=1 and

{µkK+1
t (χ, ψ)}∞t=1 are non-decreasing and bounded. Therefore they have limits, which are

denoted µk0∞(χ, ψ) and µkK+1
∞ (χ, ψ), respectively. Each of these limits is the probability

that player 1 and player 2, respectively, eventually wins the match conditional on the

initial state being k when they choose the strategy pair (χ, ψ).

We can now define the (undiscounted) match Γk which starts at state k ∈ S. For-

mally, Γk is the zero-sum game where the sets of strategies of player 1 and 2 are X

and Y , respectively, and player 1’s payoff function uk : X × Y → [−1, 1] is defined by

uk(χ, ψ) = µk0∞(χ, ψ)−µkK+1
∞ (χ, ψ). Player 2’s payoff function is consequently −uk(χ, ψ).

Note that Γ0 and ΓK+1 are degenerate games with u0(χ, ψ) = 1 and uK+1(χ, ψ) = −1.

Also note that players are indifferent among all pairs of strategies that induce equal

10



chances of winning and losing the match. We denote by Γ the collection of matches

{Γk : k = 1, . . . , K} and remark that Γ is fully determined by the set of states S and by

the set of point matrices (P k)Kk=1.

We mention that if we endowed players 1 and 2 with the payoff functionsW k
1 (χ, ψ) =

µk0(χ, ψ) andW k
2 (χ, ψ) = µkK+1(χ, ψ), respectively, we would obtain a match as defined

by Walker, Wooders and Amir [15]. Since it is not necessarily true that any pair of

strategies leads to an absorbing state with probability 1, this match is not a constant-

sum game. Also, for future reference we define, for λ ∈ (0, 1), the discounted match

Γkλ which starts at state k ∈ S as the zero-sum game where player 1’s payoff function

ukλ : X×Y → [−1, 1] is defined by ukλ(χ, ψ) = (1−λ)
∑∞

t=1 λ
t−1

(

µk0t (χ, ψ)− µkK+1
t (χ, ψ)

)

and player 2’s payoff function is −ukλ(χ, ψ).

The number vk is said to be the value of Γk if supχ∈X infψ∈Y u
k(χ, ψ) = vk =

infψ∈Y supχ∈X u
k(χ, ψ). If vk is the value of Γk for k = 1, . . . , K we say that (v1, . . . , vK)

is the value of Γ. A strategy pair (χ∗, ψ∗) ∈ X × Y is an equilibrium of Γk if

uk(χ, ψ∗) ≤ uk(χ∗, ψ∗) ≤ uk(χ∗, ψ) for all χ ∈ X,ψ ∈ Y.

In this case, uk(χ∗, ψ∗) is clearly the value of Γk. We say that (χ∗, ψ∗) ∈ X × Y is an

equilibrium of Γ if it is an equilibrium of Γk for all k ∈ {1, . . . , K}.

Matches are recursive games as defined by Everett [2]. Recursive games are a special

case of stochastic games, which were earlier introduced by Shapley [10]. Everett [2] shows

that recursive games have a value that can be approached with stationary strategies.

Mertens and Neyman [6] prove more generally that when streams of payoffs are undis-

counted all stochastic games with finite state and action spaces have a value. Thuijsman

and Vrieze [12] provide an ingenious constructive proof of Everett’s result, showing that

ε-optimal strategies can be built by appropriately modifying optimal strategies in the

discounted games. For further results in recursive games see Thuijsman [11] Flesch,

Thuijsman and Vrieze [3], Vieille [13] and the references therein.

The point matrix P k represents the point played at state k. Note that P k is not a
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game since its entries are probability distributions on S. However, it can be transformed

into a zero-sum game by assigning values to the states and averaging them according to

the entries of P k. More specifically, for any α = (α1, . . . , αK) ∈ IRK we can define the

matrix game Ak(α) as follows:

Ak(α) =
(

pk0ij +
K
∑

k′=1

pkk
′

ij α
k′ − pkK+1

ij | i ∈ I, j ∈ J
)

and the associated value mapping α →
(

valAk(α)
)K

k=1
. Everett [2] showed that every

recursive game with bounded payoffs has a value, and that this value is a fixed point

of the associated value mapping. Applied to the present setting this result yields the

following observation which plays a fundamental role in our analysis.

Observation 1 For k = 1, . . . , K, Γk has a value vk and this value satisfies vk =

val(Ak(v1, . . . , vK)).

Although Γk has a value, it may not have an equilibrium. See Everett’s [2] Example

1, reproduced in Section 4.1 below.

2.3 Stationary strategies

Given an initial state k ∈ S, a pair of stationary strategies induce a Markov chain that

allows us to compute the transition probabilities defined in (1) recursively. Specifically, a

pair of stationary strategies (~x, ~y) induces a Markov matrix M(~x, ~y) = (µss
′

(~x, ~y)|s, s′ ∈

S) whose transition probabilities are given by the probability of moving to state s′

conditional on the current state being s:

µss
′

(~x, ~y) =

∑

{ht:st=s}
π~x,~yk (ht)

∑I
i=1

∑J
j=1 x

s
iy
s
jp
ss′

ij
∑

{ht:st=s}
π~x,~yk (ht)

=
I

∑

i=1

J
∑

j=1

xsiy
s
jp
ss′

ij . (2)

12



As is well known, this probability does not depend on the initial state k.

Note that µkk
′

1 (~x, ~y) = µkk
′

(~x, ~y) and that the probabilities µkk
′

t (~x, ~y) defined in (1)

satisfy the recursive relation

µkk
′

t (~x, ~y) =
∑

s∈S

µkst−1(~x, ~y) µ
sk′(~x, ~y) k ∈ S.

In other words, they are none other than the entries of the t-th power of M(~x, ~y).

3 Quasi-binary matches and the value of a draw

In this paper we restrict attention to a particular class of simple matches which we now

define. Let Γ be a match characterized by the point matrices P k = (pkij|i ∈ I; j ∈ J ),

for k = 1, . . . , K. For each state k, define the set of its immediate successors, or simply

successors, to be

S(k) = {k′ ∈ S : pkk
′

ij > 0, for some (i, j) ∈ I × J }.

This set contains the states that can possibly be reached from state k in a single step.

Successors of k that are not k itself are called proper successors.

Definition 1 A match is quasi-binary if for each state k = 1, . . . , K the number of its

proper successors is exactly two, and pkkij < 1 for all i ∈ I, j ∈ J .

Although our results are stated for the class of quasi-binary matches, they still hold

for the larger class that includes those matches where some state k has a single proper

successor, even if pkkij = 1 for some i ∈ I, j ∈ J . In this case, the proof treats k as its

second proper successor. (We will provide more details in footnote 5 later). For the sake

of brevity, however, we decided to drop these matches from the class of quasi-binary

games.
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In a quasi-binary match each state k = 1, . . . , K has only two proper successors. We

denote them by w(k) and ℓ(k). If the game moves to state w(k) we say that player 1

won the point played at k. If the game moves to state ℓ(k) we say that player 1 lost the

point played at k. And if the game stays in state k we say that the point played at k

ended in a draw. We denote by (w, ℓ) the labeling (w(k), ℓ(k))Kk=1.

We can take advantage of the labeling (w, ℓ) to transform the point matrix P k into

a matrix game as follows. We first award player 1 a payoff of 1 if he wins the point, a

payoff of 0 if he loses the point and a payoff of ε if the point is drawn, and then replace

the distribution pkij in the ijth entry by the corresponding expected payoff p
kw(k)
ij + pkkij ε.

Formally, for each ε ∈ [0, 1] we define the matrix game P k(ε) by letting its ijth entry be

p
kw(k)
ij + pkkij ε, namely the expected value of the point played at k when players choose

the action pair (i, j) and a draw is valued at ε.5 Note that P k(ε) depends on the labeling

choice w(k), ℓ(k). Consequently, all the ancillary definitions in this section depend on

this choice.

The question we want to address is the following: Is there a labeling (w, ℓ) and an

associated value of the draw ek for each k ∈ {1, . . . , K} so that two stationary strategies

~x∗ = (x0, . . . , xK+1) and ~y∗ = (y0, . . . , yK+1) constitute an equilibrium of Γ if for all

k ∈ {1, . . . , K}, (xk, yk) is an equilibrium of P k(ek)? Our main theorem will give a

positive answer to this question. Meanwhile, the next proposition singles out, given a

labeling, a candidate for a suitable value of the draw.

Proposition 1 Let Γ be a quasi-binary match and let (w, ℓ) be a labeling. For k =

1, . . . , K, let fk : [0, 1] → [0, 1] be the function defined by fk(ε) = val(P k(ε)). Then fk

has a unique fixed point.

Proof : Since the entries of P k(ε) are in [0, 1] and are non-decreasing in ε, fk is a

5 If a state k had only one proper successor we could treat k as the missing proper successor and

denote these successors by w(k) and ℓ(k). The matrix P k(ε) would then be defined as {p
kw(k)
ij |i ∈ I, j ∈

J } and with this amended definition, the ensuing analysis would remain valid.
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nondecreasing function that maps the interval [0, 1] into itself. Therefore, by Tarski’s

fixed-point theorem fk has a fixed point, which we denote ek.

Assume that ε̂k is another fixed point of fk. Then,

|ε̂k − ek| = |fk(ε̂k)− fk(ek)|

= |val(P k(ε̂k))− val(P k(ek))|

≤ max
ij

|(p
kw(k)
ij + pkkij ε̂

k)− (p
kw(k)
ij + pkkij e

k)|

= |ε̂k − ek|max
ij

pkkij

< |ε̂k − ek|

where we have used the assumption that pkkij < 1 for all i ∈ I and all j ∈ J . But since

the above inequality is absurd, we conclude that ek is the only fixed point of fk. �

We denote by ek the unique fixed point identified in the above proposition and call

it the value of the draw in state k (with respect to (w, ℓ)). We also call P k(ek) the

point game played at k. Notice that in order to compute the value of the draw in state

k only the point matrix P k and the labeling (w, ℓ) are needed. In particular, no prior

knowledge of the value of Γ is required. The next proposition shows, however, that when

the labeling happens to be such that vw(k) > vℓ(k), the value of the draw at k bears an

interesting relationship with the values of the successors of k.

Proposition 2 Let Γ be a quasi-binary match, let (v1, . . . , vK) be its value and extend

it so that v0 = 1 and vK+1 = 0. Let (w, ℓ) be a labeling and let k be a state such that

vw(k) > vℓ(k). Also, let ek be the unique fixed point identified in Proposition 1. Then,

ek =
vk − vℓ(k)

vw(k) − vℓ(k)
.

Proof : Denote ǫk = (vk − vℓ(k))/(vw(k) − vℓ(k)). By Proposition 1, the value of the
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draw in state k is the unique fixed point of the function fk : [0, 1] → [0, 1] given by

fk(ε) = val(P k(ε)). Therefore, it is enough to show that ǫk is a fixed point of fk. Recall

that by Observation 1 vk = val(Ak(v1, . . . , vk)) where Ak(v) = (p
kw(k)
ij vw(k) + pkkij v

k +

p
kℓ(k)
ij vℓ(k)|i ∈ I, j ∈ J ). But note that Ak(v) and P k(ǫk) are strategically equivalent.

Indeed, for i ∈ I and j ∈ J the ijth entry of the matrix A(v) can be written

Akij(v) = (p
kw(k)
ij + pkkij ǫ

k)(vw(k) − vℓ(k)) + vℓ(k)

where vw(k) − vℓ(k) > 0. Therefore,

val(Ak(v)) = val(P k(ǫk))(vw(k) − vℓ(k)) + vℓ(k)

and consequently,

val(P k(ǫk)) =
val(Ak(v))− vℓ(k)

vw(k) − vℓ(k)

=
vk − vℓ(k)

vw(k) − vℓ(k)
= ǫk.

�

The foregoing proposition justifies calling ek the value of the draw in state k with

respect to (w, ℓ). To see this, notice that from state k, players will eventually move

to one of its proper successors, w(k) or ℓ(k), in which case player 1 will get (assuming

optimal play) a payoff to vw(k), or vℓ(k), respectively. Therefore, since vw(k) > vℓ(k),

player 1 has a guaranteed expected payoff to vℓ(k) and hence what is really at stake in

state k is vw(k) − vℓ(k). When the point is drawn, the players remain in state k, in which

case player 1 gets an expected payoff to vk. Namely, he nets a proportion vk−vℓ(k)

vw(k)−vℓ(k)
of

what is at stake. The above proposition shows that ek, the unique fixed point identified

in Proposition 1, is precisely this proportion – hence its interpretation as the value of a

draw.
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The next definition identifies those stationary strategies which at every state dic-

tate mixed actions that are optimal in the respective point games. According to these

strategies, behavior in each state k depends only on the matrix P k and, in particular, is

independent of the structure of the match in all the other states.

Definition 2 Let Γ be a quasi-binary match, (w, ℓ) be a labeling, and for k = 1, . . . , K

let ek be the value of the draw in k and P k(ek) the point game played at k with respect to

(w, ℓ). Also, let ~x = (xk)K+1
k=0 ∈ ~X and ~y = (yk)K+1

k=0 ∈ ~Y be two stationary strategies, one

for each player. We say that (~x, ~y) is a minimax-stationary strategy pair with respect

to (w, ℓ) if for all k = 1, . . . , K, (xk, yk) is an equilibrium of P k(ek).

It follows from Proposition 1 that if (~x, ~y) is a pair of minimax-stationary strategies

then xk guarantees that player 1 gets a payoff of at least ek in P k(ek) and yk guarantees

that player 1 gets at most ek in P k(ek). Notice that minimax-stationary strategies always

exist.

The following observation states that when players behave according to a minimax-

stationary strategy pair, the probability of player 1 eventually winning the point game

played at k is precisely the value of the draw in state k.

Observation 2 Let Γ be a quasi-binary match, (w, ℓ) be a labeling and let (~x, ~y) be a

minimax-stationary strategy pair w.r.t (w, ℓ). Then the value of the draw at k is the

corresponding probability of eventually leaving k and transiting to w(k). Formally, for

k = 1, . . . , K

ek =
µkw(k)(~x, ~y)

1− µkk(~x, ~y)
.

Proof : Since ~x = (x0, . . . , xK+1) and ~y = (y0, . . . , yK+1) constitute a pair of minimax-

stationary strategies, for k = 1, . . . , K, (xk, yk) is an equilibrium of P k(ek), and ek =

val(P k(ek)),

ek =
∑

i∈I

∑

j∈J

xki y
k
j (p

kw(k)
ij + pkkij e

k)

17



which, using equation (2) can be written as ek = µkw(k)(~x, ~y)+µkk(~x, ~y)ek. Since pkkij < 1

for all i ∈ I and all j ∈ J , we have that µkk(~x, ~y) < 1. Therefore, solving for ek we

obtain the result. �

4 Minimax-stationary strategies and equilibrium

We have seen that given a labeling (w, ℓ) we can associate to each state k a value

of the draw ek and a point game P k(ek). Additionally, the point games P k(ek) induce

stationary strategies in Γ in a natural way: they prescribe that players choose at k mixed

actions that are optimal in P k(ek). In this section we will find a particular labeling all

of whose induced minimax-stationary strategies constitute an equilibrium of the match.

Specifically, we will show the following.

Theorem 1 Let Γ be a quasi-binary match. There exists a labeling such that any pair

of minimax-stationary strategies with respect to it constitutes an equilibrium of Γ.

Before proving the theorem we discuss the result.

4.1 Discussion

a) Interpretation of the result. Not only does Theorem 1 show the existence of equi-

librium, but it also identifies one with a particularly appealing interpretation. The

labeling w(k), ℓ(k) identified in the theorem, along with the associated value of a draw

ek, suggests that moving to w(k) can be seen as player 1 winning the point played at

k, moving to ℓ(k) as player 2 winning the point, and drawing as if the point was shared

in the proportions (ek, 1− ek). Theorem 1 identifies an equilibrium in which both play-

ers adopt this interpretation and aim at maximizing their respective expected shares of

the point at stake. We will later show that not all stationary equilibria admit such an

interpretation.

18



b) Independence of the equilibrium behavior in state k. Theorem 1 states that there

exists an endogenously determined labeling such that any pair of minimax-stationary

strategies with respect to it constitutes an equilibrium of Γ. Notice that these strategies

dictate behavior in state k that depends on the point matrices in states different from k

only to the extent that they affect the equilibrium labeling. Therefore, any modification

in the structure of the match that involves neither a change in the point matrix P k nor

in the equilibrium labeling, will leave the equilibrium behavior in state k unaffected.

This is not the case for the discounted match Γλ. Indeed, even a small perturbation

of the point matrix in a state will generically affect equilibrium behavior in all other

states.6

c) Computation of the value of the match. Theorem 1 allows us to compute the value

v of Γ in a conceptually easy manner. To see this, for each of the 2K possible la-

belings l, let (~xl, ~yl) be a minimax-stationary strategy pair with respect to it, and let

(us(~xl, ~yl))s∈S be the corresponding payoffs. (Recall that minimax-stationary strategies

can be computed without knowing v.) In order to identify v it is enough to com-

pare these payoffs as follows. Take any two distinct payoff vectors (us(~xl, ~yl))s∈S and

(us(~xm, ~ym))s∈S corresponding to labels l and m, and assume that for some state k,

uk(~xl, ~yl) > uk(~xm, ~ym). Next calculate the payoff in Γk when player 1 uses ~xl and player

2 uses ~ym. If u
k(~xl, ~ym) > uk(~xm, ~ym) then we conclude that ~ym does not guarantee that

player 1 gets a payoff less or equal uk(~xm, ~ym), which means that uk(~xm, ~ym) is not the

value of Γk. If uk(~xl, ~ym) < uk(~xl, ~yl) then we conclude that ~xl does not guarantee that

player 1 gets a payoff of at least uk(~xl, ~yl), which means that uk(~xl, ~yl) is not the value of

Γk. Since at least one of the above inequalities must hold, we conclude that at least one

of the above vectors of payoffs is not the value of Γ. Since Theorem 1 guarantees that

there is one labeling l∗ such that (us(~xl∗ , ~yl∗))s∈S is the value of Γ, after at most 2K − 1

6We should note, though, that for binary matches the above-mentioned invariance does hold. That
is, if Γ′

λ is a binary discounted match that is obtained from the binary discounted match Γλ by slightly

perturbing the non-zero entries of its point matrices such that for state k , v
w(k)
λ > v

ℓ(k)
λ ⇔ v′

w(k)
λ >

v′
ℓ(k)
λ , then equilibrium behavior in state k is the same in both Γλ and Γ′

λ.
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comparisons we identify the value of the match. In fact, as will be seen later, one needs

only to consider payoffs (us(~xl, ~yl))s∈S that are consistent with their labelings, namely

uw(s)(~xl, ~yl) ≥ uℓ(s)(~xl, ~yl) for s = 1, . . . , K.

d) Computation of the equilibrium minimax-stationary strategies. Theorem 1 says not

only that every quasi-binary match Γ has an equilibrium but also that it has an equi-

librium which is relatively easy to compute. To do this, compute the value v of Γ along

the lines described in item c) and then, if the equilibrium labeling has not yet been

identified, use v to build the labeling mentioned in Theorem 1 which, as will be seen,

can be done once v is known. The equilibrium strategies are the minimax-stationary

strategies associated with this labeling.

e) Alternative existence proof. If we were interested in just showing the existence of

equilibrium, we could do so by applying standard techniques based on the martingale

property of the value and ignoring the concept of the value of a draw altogether. Specifi-

cally, it can be shown that a strategy pair (~x∗, ~y∗) where for each state k = 1, . . . , K, x∗k

and y∗k are optimal in Ak(v) for players 1 and 2, respectively, constitutes an equilibrium

as long as for each state k such that both its successors have the same value, x∗k and

y∗k are completely mixed. These strategies, however, lack the natural interpretation

we are seeking for, i.e., players do not identify one successor that they should try to

move to and another that should be avoided. (The reason a player chooses a completely

mixed action in a state whose successors have equal values is not necessarily that he is

indifferent between moving to each one of them. Instead, he allows himself to act as if

he did not know which state he should move to since by mixing he is making sure that

were the current state to recur, he will eventually make the right choice.) Furthermore,

in order to compute the above-mentioned equilibrium one needs to know the value of

the game for which the alternative existence proof is of no help whatsoever. Neither

does it highlight the fact that equilibrium play in each state is independent of the point

matrices in the other states. As we have tried to argue in items a) – d) our result does

not have these limitations.
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f) Necessity of the restriction to quasi-binary matches. As will be clear from the proof,

Theorem 1 can be immediately generalized to quasi-binary recursive games. In other

words the restriction to games with only two absorbing states is unnecessary. However,

the condition that pkkij < 1 for all i ∈ I and j ∈ J cannot be dispensed with. Example

1 in Everett [2], summarized in the following matrix, illustrates this point.

P 1 :





s1 1

1 −1





In this match, there is only one non-absorbing state, denoted by s1, and if players choose

the first row and the first column, they remain in s1 with probability 1. Following

the usual practice, the payoffs 1 and -1 represent the transition to the corresponding

absorbing states. As Everett shows, the value of Γ is 1 but player 1 cannot guarantee

this payoff. Specifically, while player 1 can obtain a payoff as close to 1 as he wishes by

choosing the mixed action (1 − ε, ε) at every stage, he cannot guarantee a payoff of 1

since, for every one of his strategies, player 2 has a reply that yields a payoff less than 1.

Neither can the restriction to no more than two proper successors per state be relaxed,

as the following two-state version of Everett’s example demonstrates.

P 1 :





s2 1

1 −1



 P 2 :





s1 1

1 −1





This match is obtained from the previous one by cloning the only non-absorbing state

and amending the point matrices so that when players choose the first row and the first

column, there is a transition from one state to its clone. Therefore, this match does not

have an equilibrium. Note, however, that although the probability of remaining in the

current state is 0 for all action pairs, both states have three proper successors.
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4.2 The natural labeling

Before we prove the theorem we will construct an algorithm that labels the proper suc-

cessors of the states. We will later show that any pair of minimax-stationary strategies

with respect to this labeling is an equilibrium of Γ. If we were interested in showing

only the existence of equilibrium, we could dispense with the construction of the natural

labeling altogether and resort to standard arguments in stochastic games. However, the

identification of this labeling allows us to build an equilibrium with a natural interpre-

tation in terms of the value of a draw.

The idea of the labeling is as follows.7 Consider a state s and let s1 and s2 be

its proper successors. If these successors have different values, then the one with the

highest value will be labeled w(s) and the one with the lowest value will be labeled ℓ(s).

However, when they have the same value the choice of labels is not obvious and must

be made carefully. There are three cases to consider. If v(s1) = v(s2) > 0, the state

denoted by w(s) will be a proper successor from which player 1 can guarantee a positive

probability of winning the match by following a path of states, not including s, with

non-decreasing values. If v(s1) = v(s2) < 0, the state denoted by ℓ(s) will be a proper

successor from which player 2 can guarantee a positive probability of winning the match

by following a path of states, not including s, with non-increasing values. Finally, if

v(s1) = v(s2) = 0, any labeling of s’s successors will do. We next define a partition of

the set of states that will allow us to identify the above-described w(s) and ℓ(s).

Let (v1, . . . , vK) be the value of Γ and extend it so that v0 = 1 and vK+1 = −1. Let

S+ = {k ∈ S : vk > 0} and S− = {k ∈ S : vk < 0}. For any k ∈ S, and S ′ ⊆ S, we write

k → S ′ if for all j ∈ J there exists i ∈ I such that
∑

k′∈S′ pkk
′

ij > 0. In other words,

k → S ′ if player 2 cannot prevent a transition from k to some state in S ′. Similarly,

we write k
−
−→ S ′ if for all i ∈ I there exists j ∈ J such that

∑

k′∈S′ pkk
′

ij > 0. In other

7There is an alternative way of building an equilibrium labeling, according to which w(s) is chosen
to be a successor of s with the highest discounted value for a sufficiently high discount factor. Figuring
out, however, the appropriate discount factor and the associated discounted value is not an easy task.
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words, k
−
−→ S ′ if player 1 cannot prevent a transition from k to some state in S ′.

We now iteratively classify the elements of S+ into disjoint subsets. Let S+
0 = {0}

and for n = 0, 1, 2, . . . let

S+
n+1 = {s ∈ S+ \ ∪nν=0S

+
ν : vs ≥ vs

′

for all s′ ∈ S+ \ ∪nν=0S
+
ν and s→ ∪nν=0S

+
ν }.

The set S+
n+1 contains the states with maximum value among those not yet classified

from which player 1 can guarantee a positive probability of a transition to a state that

has already been classified.

Note that as long as S+ \ ∪nν=0S
+
ν is not empty, S+

n+1 is not empty either. Indeed,

if there was no state in argmax{vs : s ∈ S+ \ ∪nν=0S
+
ν } with s → ∪nν=0S

+
ν , there

would be a strategy for player 2 that guarantees that if play were to leave the set

argmax{vs : s ∈ S+ \ ∪nν=0S
+
ν }, it would do so through a state s′ with vs

′

< vs. This

would contradict the fact that player 1 can guarantee a payoff as close to vs as he wishes.

Similarly, we iteratively classify the states in S− into disjoint subsets as follows: we

set S−
0 = {K + 1} and for m = 0, 1, 2, . . . we let

S−
m+1 = {s ∈ S− \ ∪mν=0S

−
ν : vs ≤ vs

′

for all s′ ∈ S− \ ∪mν=0S
−
ν and s

−
−→ ∪mν=0S

−
ν }.

For s ∈ S+, we denote by n(s) the stage at which it was classified, namely, the index

n such that s ∈ S+
n . Similarly, for s ∈ S−, we denote by m(s) the index m such that

s ∈ S−
m. We can now proceed to label the proper successors of the states in {1, . . . , K}.

Consider a state s ∈ {1, . . . , K}. Let s1, s2 be its two proper successors. Then we denote

w(s) =































s1 if vs1 > vs2

s1 if vs1 = vs2 > 0 and n(s1) ≤ n(s2)

s1 if vs1 = vs2 < 0 and m(s1) > m(s2)

s2 otherwise

(3)

and denote by ℓ(s) the other successor. In words, if s’s two successors have different
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value, w(s) is the one with the highest value. If they have the same value and it is

positive, w(s) is chosen to be the successor that has been classified earlier. If they have

the same value and it is negative, w(s) is chosen to be the successor that has been

classified later. If both successors have a value of 0, any of them can be chosen to be

w(s). We call any labeling built according to the above procedure a natural labeling.8

Note that if vs > 0, then n(w(s)) < n(s). Indeed, one of s’s successors must have

been classified before s (otherwise s could not have been classified), and by definition,

w(s) is the proper successor of s’s that has been classified the earliest.

For any state s, the natural labeling designates as w(s) the proper successor with

the highest value and in the case where both successors have equal value, it chooses one

according to a specific tie-breaking rule. The following example shows that the outcome

of this tie-breaking rule cannot be ignored.

Consider a simple one-person decision problem with three states, S = {s0, s1, s2}.

State s0 is the only absorbing state and if reached, the player wins. The match is

characterized by the following matrices in which again, in accordance with the usual

practice, a transition to the absorbing state is denoted by the corresponding payoff:

P 1 :





s2

1



 P 2 :





s1

1





It is clear that the value of all states is 1; the player can guarantee a win by choosing his

second action in s1 and s2. There are two possible ways to break the tie of the successors

of both s1 and s2. The natural labeling sets w(s1) = w(s2) = s0, and indeed the minimax-

stationary strategies with respect to this labeling constitutes an equilibrium. If we ignore

the tie-breaking rule and set ℓ(s1) = ℓ(s2) = s0, we obtain minimax-stationary strategies

that lead to an infinite cycle and thus to a payoff of 0.

8There may be more than one natural labeling. For our analysis, any of them will do.
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4.3 Proof of Theorem 1

We now show that any minimax-stationary strategy pair with respect to the natural

labeling constitutes an equilibrium of Γ.

Let (~x∗, ~y∗) be a minimax-stationary strategy pair with respect to the natural label-

ing. In order to show that it is an equilibrium of Γk we will show that ~x∗ guarantees a

payoff of at least vk for player 1 in Γk. The fact that ~y∗ guarantees that player 1 gets

a payoff of at most vk in Γk is analogous and is left to the reader. Finding a strategy

ψ∗ ∈ Y that minimizes uk(~x∗, ·) is a Markov decision problem with the expected total

reward criterion. Consequently, it has a stationary solution (see Puterman [8], Theorem

7.1.9). Therefore, it is enough to show that

uk(~x∗, ~y) ≥ vk k = 1, . . . , K

for all stationary strategies ~y of player 2. Let ~y = (y0, . . . , yK+1) be a stationary strategy

for player 2. The fact that x∗k guarantees ek in the point game P k(ek) for k = 1, . . . , K

implies that
∑

i∈I

∑

j∈J

x∗ki y
k
j (p

kw(k)
ij + pkkij e

k) ≥ ek k = 1, . . . , K.

Let M(~x∗, ~y) = (µkk
′

(~x∗, ~y)|k, k′ ∈ S) be the Markov transition matrix induced by the

strategy pair (~x∗, ~y). Using equation (2), the above inequality can be written as

µkw(k)(~x∗, ~y) + µkk(~x∗, ~y) ek ≥ ek k = 1, . . . , K. (4)

It follows that

µkw(k)(~x∗, ~y) vw(k) + µkk(~x∗, ~y) vk + µkℓ(k)(~x∗, ~y) vℓ(k) ≥ vk k = 1, . . . , K. (5)

To see this, let k ∈ {1, . . . , K}. The natural labeling ensures that vw(k) ≥ vℓ(k). If

vw(k) = vℓ(k), inequality (5) is trivially satisfied since in this case, by Observation 1,
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vw(k) = vk = vℓ(k). And if vw(k) > vℓ(k), inequality (5) is obtained by multiplying (4) by

vw(k) − vℓ(k), adding vℓ(k) to both sides and applying Proposition 2. Taking into account

that k has no successors except for w(k), k and ℓ(k), we can rewrite inequality (5) as

µk0(~x∗, ~y) +
K
∑

s=1

µks(~x∗, ~y) vs − µkK+1(~x∗, ~y) ≥ vk k = 1, . . . , K.

Denoting v = (v0, v1, . . . , vK+1)′, we can rewrite the above inequality in matrix notation

as

M(~x∗, ~y) · v ≥ v.

Iterating, we obtain thatM t(~x∗, ~y)·v ≥ v for all t. In other words, for each k = 1, . . . , K,

we have that

µk0t (~x∗, ~y) +
K
∑

s=1

µkst (~x∗, ~y) vs − µkK+1
t (~x∗, ~y) ≥ vk for all t.

Since uk(~x∗, ~y) = µk0∞(~x∗, ~y) − µkK+1
∞ (~x∗, ~y), in order to show that uk(~x∗, ~y) ≥ vk it is

enough to show that lim supt→∞

∑K
s=1 µ

ks
t (~x∗, ~y) vs ≤ 0. And to prove this it is enough

to show that for all states s with vs > 0, except for s = 0, limt→∞ µkst (~x∗, ~y) = 0. The

Markov matrix M(~x∗, ~y) induces a partition of S into recurrent classes and possibly a

transient set.9 We will end the proof by showing that all states s with positive value,

except for state 0, are transient states and thus limt→∞ µkst (~x∗, ~y) = 0.

Let C be a recurrent class different from {0}. We will show that all states in C have

non-positive value. Let s ∈ C and assume by contradiction that vs > 0. Without loss of

generality assume that n(s) ≤ n(s′) for all s′ ∈ C such that vs
′

> 0. Since vw(s) ≥ vs > 0

and since n(w(s)) < n(s), we have that w(s) /∈ C. This means that µsw(s)(~x∗, ~y) = 0.

By equation (4), and since µss(~x∗, ~y) < 1, we obtain that es = 0. Namely, player 2 can

prevent a transition from s to w(s). That is, we must have that s 6→ {w(s)}. But since

9A set C is a recurrent class if
∑

k′∈C µkk′

(~x∗, ~y) = 1 for all k ∈ C and no proper subset of C has
this property. A state is transient if there is a positive probability of leaving and never returning.
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s → ∪
n(s)−1
ν=0 S+

ν we must have that ℓ(s) ∈ ∪
n(s)−1
ν=0 S+

ν . This implies that n(ℓ(s)) < n(s),

which in turn implies that vℓ(s) ≥ vs. By our choice of s, this means that ℓ(s) /∈ C.

We have obtained that neither ℓ(s) nor w(s) is in C, which contradicts the fact that

µss(~x∗, ~y) < 1. �

4.4 Monotonicity and a partial converse

As mentioned before, it is not necessarily so that every stationary equilibrium of a quasi-

binary match is a minimax-stationary strategy pair with respect to some labeling. To

see this, consider again the example that appears at the end of section 4.2. Consider

the stationary strategy according to which player 1 chooses his two actions with equal

probabilities in both states. It can be checked that, independent of the initial state,

this strategy guarantees a payoff of 1; hence it is an equilibrium strategy. However, it is

not a minimax-stationary strategy with respect to any labeling since no matter how the

successors of s1 are labeled, the corresponding minimax-stationary strategy will never

prescribe that player 1 should mix between his actions in s1.

We now present a partial converse of Theorem 1. It says that when for every state

both of its proper successors have different values, any stationary strategy equilibrium

of Γ is a minimax-stationary strategy pair with respect to the natural labeling.

Let Γ be a quasi-binary match and let (v1, . . . , vK) be its value. Extend it so that

v0 = 1 and vK+1 = −1 and let v = (v0, . . . , vK+1). Note that if the proper successors of

a given state k have different values, then vw(k) > vℓ(k) for any natural labeling (w, ℓ).

We say that Γ satisfies monotonicity if for every state both its proper successors have

different values. Notice that if Γ satisfies monotonicity, there is a unique natural labeling.

Theorem 2 Let Γ be a quasi-binary match that satisfies monotonicity. A pair of sta-

tionary strategies is an equilibrium of Γ only if it is a pair of minimax-stationary strate-

gies with respect to the natural labeling.
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Proof : Let (~x∗, ~y∗) be a stationary equilibrium of Γ and let (w, ℓ) be the natural

labeling. Let k ∈ 1, . . . , K. Since vw(k) > vℓ(k), by Proposition 2

ek =
vk − vℓ(k)

vw(k) − vℓ(k)
. (6)

We need to show that x∗k guarantees that player 1 gets a payoff of at least ek in P k(ek)

and that y∗k guarantees that player 1 gets a payoff of at most ek in P k(ek).

Since (~x∗, ~y∗) is an equilibrium of Γk,

vk = uk(~x∗, ~y∗) ≥ uk(χ, ~y∗) for all χ ∈ X. (7)

Since ~y∗ is a stationary strategy, the problem of finding a strategy for player 1 that max-

imizes uk(·, ~y∗) is a Markov decision problem (with the expected total-reward criterion).

Equation (7) says that ~x∗ is one of its solutions and that it attains vk. Therefore (see

Puterman [8], Chapter 7),

v = max
~x∈ ~X

M(~x, ~y∗)v (8)

where M(~x, ~y∗) is the Markov matrix induced by the stationary strategy pair (~x, ~y∗).

This means that, using equation (2), for every k = 1, . . . , K,

vk = max
~x∈ ~X

K+1
∑

k′=0

∑

i∈I

∑

j∈J

xki y
∗k
j p

kk′

ij v
k′

= max
~x∈ ~X

∑

i∈I

∑

j∈J

xki y
∗k
j

K+1
∑

k′=0

pkk
′

ij v
k′

= max
~x∈ ~X

∑

i∈I

∑

j∈J

xki y
∗k
j (p

kw(k)
ij vw(k) + pkkij v

k + p
kℓ(k)
ij vℓ(k)).

Subtracting vℓ(k) from both sides and then dividing the result by vw(k)−vℓ(k) (which can
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be done since this difference is positive) using equation (6) we find that

ek = max
~x∈ ~X

∑

i∈I

∑

j∈J

xki y
∗k
j (p

kw(k)
ij + pkkij e

k).

This shows that y∗k guarantees that player 1 gets at most ek in P k(ek).

A similar argument shows that x∗k guarantees that player 1 gets at least ek in

P k(ek). �

We end this section by discussing the difference between quasi-binary matches and

Walker, Wooders and Amir’s [15] binary Markov games. As mentioned in the introduc-

tion, one small difference is that while in the former, states may have three successors,

in the latter they have only two. The main difference, however, is that whereas in the

former a player’s payoff consists of the difference between the probability of winning and

the probability of losing the match, in the latter it is simply the probability of winning

the match. Formally, in a binary Markov game player 1’s payoff from a strategy pair

(χ, ψ) is W k
1 (χ, ψ) = µk0(χ, ψ), and player 2’s payoff is W k

2 (χ, ψ) = µkK+1(χ, ψ).

To illustrate this difference, consider the following game form. There are four non-

absorbing states, denoted s1, s2, s3, and s4. States s1 and s4 are trivial states that if

reached, a lottery is obtained. Specifically, in s1, player 1 wins the match with probability

1/4 and loses the match with probability 3/4, and similarly in s4, player 1 wins the match

with probability 3/4 and loses the match with probability 1/4. In state s2 both players

can guarantee a transition to state s3, and in state s3 both players can force a transition

to s2.
10 The point matrices are as follows:

10This game resembles a chess position in which players can either transition to an endgame with
unfavorable odds or keep playing safe. It is usually the case that players prefer the second option and
thus the game ends in a draw.
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P 1 :









b

1 −1

1/4 3/4









P 2 :





s1 s3

s3 s3



 P 3 :





s4 s2

s2 s2



 P 4 :









b

1 −1

3/4 1/4









If we endow players 1 and 2 with the payoff functions uk(φ, ψ) and −uk(φ, ψ), respec-

tively, we obtain a (quasi) binary match whose unique equilibrium outcome results in

an infinite play that orbits around states s2 and s3. Indeed, since at state s2 each player

can force a transition to s3, no matter how we label its successors all minimax stationary

strategies will result in a transition to state s3. Similarly, since at state s3 each player

can force a transition to s2, no matter how we label its successors all minimax station-

ary strategies will result in such a transition. The values of the states are v1 = −1/2,

v2 = v3 = 0 and v4 = 1/2, and therefore the natural labeling is w(s2) = s3, ℓ(s2) = s1,

w(s3) = s4, ℓ(s3) = s2. According to Theorem 1, all pairs of minimax stationary strate-

gies with respect to this labeling are an equilibrium. And according to Theorem 2 they

are the only stationary equilibria of the game.

Alternatively, if we endow the players with the payoff functions W k
1 and W k

2 we

obtain a binary Markov game as defined by Walker, Wooders and Amir [15]. Thus

defined, this game is not constant-sum and as a consequence it has three stationary

equilibrium outcomes with three different payoffs.

One equilibrium consists of players 1 and 2 choosing the second row and column,

respectively, both in states s2 and s3. This equilibrium leads to a never-ending cycle

orbiting around s2 and s3, yielding a winning probability of 0 for both players. Notice

that in this equilibrium one of the players uses a weakly dominated action.

Besides this equilibrium, there are two additional kinds of equilibria, both of which

lead to finite play. In one of them, player 1 chooses row 2 in state s2, and in state

s3 players 1 and 2 choose the first row and first column, respectively, with positive

probability. In these equilibria, if the initial state is s2 or s3 player 1 wins the game with

probability 3/4 and player 2 wins with probability 1/4. In the other kind of equilibria,
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player 2 chooses column 2 in state s3, and in state s2 players 1 and 2 choose the first

row and first column, respectively, with positive probability. In these equilibria, if the

initial state is s2 or s3 player 1 wins the game with probability 1/4 and player 2 wins

with probability 3/4.

As we mentioned above, no matter how we label the states’ successors, all minimax

stationary strategy pairs will result in a never ending cycle orbiting around s2 and s3,

and in a 0 payoff for both players. It turns out that there are infinitely many such pairs

and except for one, none of them constitutes an equilibrium. Specifically, as long as none

of the players chooses a weakly dominated action with probability one, one of them will

choose his first action with positive probability in state s2 and thus the other player can

profitably deviate by choosing his own first action and causing a transition to state s1,

with the resulting a positive payoff.

This is a robust example where the non-zero sum nature of the binary Markov games

essentially transforms the match into a coordination game. As a result, no matter the

labeling, almost none of the pairs of minimax-stationary strategies is an equilibrium of

the binary Markov game. Walker, Wooders and Amir’s [15] equilibrium theorem states

that if a certain labeling satisfies a monotonicity condition, then any pair of minimax-

stationary strategies with respect to it constitutes an equilibrium. Their monotonicity

condition’s role is to restrict the class of binary Markov games to exclude examples

like this one. In contrast, by modeling matches as standard recursive games, our result

requires no such restriction.
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