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1 Introduction

Economists have long been interested in income inequality. Typical issues include the evo-

lution of income inequality over time in some particular region, the differences in income

inequality across different regions, the effect of various policies on income inequality, and

conversely, the effect of income inequality on various economic variables.1 In order to ad-

dress these and other similar questions one must first be able to measure income inequality,

which is not a straightforward task.

The literature on income inequality measurement offers a plethora of inequality indices

but the extent to which they are appropriate is not at all obvious. To compare the perfor-

mance of different indices one may apply them to various distributions and check whether

or not they contradict one’s intuitions about inequality. For instance, they may be applied

to two income distributions, one of which is believed to be more unequal than the other,

and all those indices that contradict our subjective judgment may be discarded. Although

this method may seem reasonable, it may not be very reliable, as discarding indices based

on intuition is not the best scientific practice. Just as optical illusions may induce us to

believe that one object is longer than another one while they are actually of equal length,

so a false impression may induce us to believe that one income distribution is more unequal

than another one, while in fact their level of inequality is the same.

Another, more cautious, way to evaluate inequality measures is to consider their proper-

ties at a more abstract level. We could compile a list of simple properties that a reasonable

inequality measure should satisfy and then check which inequality measures do actually sat-

isfy them. This method allows us to compare different indices in terms of the differential

properties they do and do not satisfy, and has been successfully applied in the characteriza-

tion of families of Gini-type indices, the Theil index, and the family of generalized entropy

indices, among many others. In particular, Bourguignon [7] and Foster [15] have shown that

1See Goldberg and Pavcnik [17] for a recent survey on the effect of globalization on income inequality in

developing countries, and Helpman et al. [18] for a theoretical analysis of the effect of trade liberalization on

income inequality.
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the Theil index of income inequality is the only index that satisfies several basic axioms as

well as a simple decomposability property, known as Theil-Decomposability. In an important

paper Shorrocks [24] shows that the generalized entropy indices are the unique indices (up

to a monotone transformation) that are consistent with the Lorenz partial order and satisfy

the ordinal property of aggregativity. Later on, Shorrocks [25] showed that aggregativity can

be replaced by the ordinal axiom of subgroup consistency.

Some properties of inequality indices are uncontroversial, to the extent that they are

considered to be the defining properties of the bare concept of inequality measure. One

example is the Pigou-Dalton principle of transfers, which postulates that the transfer of

income from a rich individual to a poorer one decreases inequality as long as the poor

individual does not become richer than the rich one. Given other basic properties, this

axiom is equivalent to requiring that the order be consistent with the Lorenz criterion.

Other axioms, though very convenient, are less uncontroversial. For example, some require

the inequality index to be decomposable in a particular way. Specifically, given any partition

of a society into two subsocieties, they require that the overall inequality be decomposable

into the inequality between these subsocieties, and the inequality within them. Though

useful in applications, this decomposability is not at all a defining property of an inequality

index. In fact, there are well-known inequality indices that are not decomposable.

It is important to bear in mind that some axioms are ordinal in nature, while others

are cardinal. Ordinal axioms impose restrictions on how different income distributions are

ranked. The Pigou-Dalton principle of transfers, for instance, is an ordinal property in

that it compares two particular distributions and tells us which one is more unequal. It

does not, however, relate to the magnitude of the inequality difference. Cardinal axioms,

on the other hand, impose restrictions on the functional form of the index that is used to

measure inequality. The decomposability property that Bourguignon [7] and Foster [15] use

to characterize the Theil index is cardinal, since it requires that the total inequality of a

region be a weighted sum of the inequalities of its subregions and the inequality between

these subregions. This property is lost if we apply a non-linear monotonic transformation to
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the index.

In this paper we strip the decomposability property used by Bourguignon [7] and Fos-

ter [15] of all its cardinal content, and retain only its ordinal content. In particular, we

identify an ordinal and meaningful decomposability property which is weaker than Theil De-

composability. This ordinal decomposability property states the following. Suppose we have

two societies S and S ′ with the same total income but not necessarily the same population

size. Identify a subsociety in each society with the same population size, n, and the same

total income, y. The ranking of the two societies, S and S ′, in terms of income inequality

should be independent of the way we distribute the total income y among the n members of

the subpopulation. We use this property, along with other well-known ordinal properties, to

characterize the Theil ordering of income inequality.

The rest of the paper is organized as follows. After giving a short review of the related

literature in Section 2, we present the model and list examples of inequality indices in

Section 3. Section 4 states the axioms and the main characterization theorem, the proof of

which appears in Section 5. Section 6 concludes.

2 Related Literature

The axiomatic literature on inequality indices is quite vast. Weymark [29] defines a family of

generalized Gini absolute inequality indices, and characterizes it within the class of societies

with a fixed population. He also defines a family of generalized Gini relative inequality

indices, which was axiomatically characterized by Ben Porath and Gilboa [5] within the

class of societies with a fixed population and a fixed income. Yaari [30], Bossert [6] and

Aaberge [1] provide characterizations of this family within a larger class of societies. Further

characterizations of the Gini indices can be found in Thon [28], Donaldson and Weymark [13,

14], Yitzhaki [31], and Barret and Salles [4]. The family of generalized entropy measures has

been studied by Cowell [10], Cowell and Kuga [11, 12], Shorrocks [23, 24], and Russell [22],

to name a few. Finally, Atkinson [2] introduces and characterizes the family of Atkinson
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measures, which is further characterized by Lasso and Urrutia [19].2

One member of the family of general entropy indices is the Theil index, which has been

introduced by Theil [26]. Theil [26, 27] shows this index to have the following useful property

which, following Foster [15], we call Theil-Decomposability. The property can be described

as follows. Partition a society into two groups of income earners. We can define its within-

group inequality as the weighted average of the income inequality levels of the two groups,

the weights being the income shares of each group. We can also define the between-group

inequality as the inequality level of the original society after smoothing the income of each

group. In other words, between-group inequality is the inequality that would result if there

was no within-group inequality. It turns out that no matter how the original society is

partitioned, Theil’s index measures its income inequality as the sum of the within-group and

between-group inequalities.

Bourguignon [7] used this decomposability property to axiomatically characterize the

Theil index. In particular, he showed that it is the only twice differentiable index that

satisfies various uncontroversial axioms as well as Theil-Decomposability. Foster [15] shows

that the requirement of twice differentiability can be replaced by continuity.3 In this paper we

show on a class of continuous distributions that we can replace the cardinal axiom of Theil-

Decomposability by weaker ordinal axioms and still obtain the Theil inequality ordering.

Our proof is very different from those of Bourguignon [7] and Foster [15]. Bourguignon

heavily relies on the twice differentiability of the index. Foster, in turn, relies on Lee’s [20]

theorem to show that a particular restriction of any index that satisfies Theil decomposability

(and other uncontroversial axioms) must be a multiple of Shannon’s measure of entropy.4

In contrast, we rely on a well-known characterization of the logarithmic functions to show

2For comprehensive surveys on income inequality measures, see Cowell [9] and Chakravarty [8].

3Foster’s [15] main result further shows that continuity can be dispensed with by strengthening the

Directness axiom and assuming the Pigou-Dalton principle of transfers instead.

4This restriction is the index applied only to two-person societies, with one person earning a proportion

t of the total income and the other one the remaining 1 − t.
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that a specific index that satisfies our axioms, restricted to particularly simple societies,

is in fact a logarithmic function.5 While Foster’s proof consists mainly of showing that a

Theil-Decomposable index must be a multiple of Theil’s measure, the most burdensome part

of our proof consists in showing that an inequality ordering that satisfies our axioms can be

represented by a Theil-Decomposable index. Once this is done, showing that this index is

in fact Theil’s measure is less difficult.6 Our result is reminiscent of Frankel and Volij’s [16]

characterization of the Mutual Information measure of segregation. The main difference is

that Frankel and Volij, owing to an extensive use of an axiom of symmetry among different

ethnic groups and one of invariance to splitting of groups, are able to prove their result

without resorting to decomposability. In our case, however, since there are no multiplicity

of groups, we have to add a decomposability axiom.

An alternative but indirect proof of our result can be obtained if we strengthen our di-

rectness requirement to the Pigou-Dalton principle of transfers, and if we restrict attention

to the class of discrete distributions. Indeed, Shorrocks [24, 25] shows that in this class, the

generalized entropy indices are the only ones (up to a monotonic transformation) that sat-

isfy symmetry, the Pigou-Dalton principle of transfers, replication invariance, homogeneity,

continuity, and subgroup consistency. Therefore, by checking that none of the generalized

entropy indices, except for the Theil index, satisfies our ordinal decomposability axiom, one

obtains a full characterization of it. Shorrocks’s proof, however, is restricted to the class

of discrete distributions and makes heavy use of results on functional equations. Using the

flexibility awarded by a larger class of distributions, we offer a direct and more elementary

proof which we believe is easy to follow.

5These simple societies are ones where a proportion 1 − t of the population has no income at all and the

remaining proportion shares all of society’s income evenly.

6We should point out that for this part of our proof we cannot rely on Foster’s result because we deal

with a class of societies that is larger than Foster’s. Furthermore, his continuity axiom is different from ours.
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3 Definitions

A generalized society is a non-decreasing, right-continuous real function F : [0,∞) → R+.

For each y ≥ 0, F (y) represents the population mass with income less or equal y. We will

restrict attention to generalized societies where income is bounded. Namely, for each society

F , there is y, such that F (y) = F (y) for all y ≥ y.

For any generalized society F , we denote by |F |, the total level of income in F , and by

n(F ) its total population. That is,

|F | =

∫ ∞

0

y dF and n(F ) = lim
y→∞

F (y).

A proper society is a generalized society whose total level of income is positive, i.e |F | > 0.

Note that if F and G are generalized societies, one of which is proper, then F + G is

also proper. Unless stated otherwise, whenever we refer to societies we mean proper ones.

We denote by F the class of proper societies with bounded income. We denote by F+ the

subclass of proper societies F such that F (0) = 0. Namely, with no agents with 0 income.

Some indices are not well-defined for societies outside F+. For our proof to be valid it is

important that the class is F and not just F+. The reason is that in order to show that

any index that satisfies our axioms is the Theil index, we first restrict attention to a class of

societies in which a positive proportion of the populations has 0 income. Only after showing

that on this small class the order must be represented by the Theil index, can we extend the

result to the whole class of societies. See Proposition 2 for details.

For each subset E ⊂ R, 1E denotes its characteristic function. For any proper society

F ∈ F , we denote by F the smoothed society n(F ) · 1[|F |/n(F ),∞) that is obtained from F

by redistributing F ’s income equally among its members. Also, for any α ≥ 0, and for

any generalized society F , αF denotes the generalized society that is obtained from F by

multiplying, for each y ≥ 0, the mass of people with income less or equal y, by α. That

is, αF is defined by (αF )(y) = αF (y). Similarly, F(α) denotes the generalized society that

is obtained from F by multiplying, each individual’s income by α. Formally, F(α) is the

function defined by F(α)(y) = F (αy).
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An inequality ordering is a complete and transitive binary relation < on F .7 For any

two societies F and G, F < G means that F ’s income distribution is at least as unequal

as G’s. Some orderings can be represented by an inequality index. An inequality index

is a function I : F →R that assigns to each society in F a real number, that stands for

the society’s inequality level. We say that an inequality index I : F →R represents the

inequality ordering < if for all societies F,G ∈ F , F < G if and only if I(F ) ≥ I(G).

3.1 Examples of inequality indices

Example 1 The Theil index, T : F → [0,∞), is defined as follows.8

For all F ∈ F ,

T (F ) =

∫ ∞

0

y

|F |
ln(

n(F )

|F |
y)dF (y).

The Theil ordering is the ordering represented by the Theil index.

Example 2 The Second Theil index, T0 : F+ → [0,∞), is defined as follows.

For all F ∈ F+,

T0(F ) =

∫ ∞

0

ln

(
|F |

n(F )y

)
1

n(F )
dF (y).

Both T and T0 belong to the family of generalized entropy indices. The remaining indices

of this family are defined next.

Example 3 The Generalized Entropy index, GEε : F+ → [0,∞), is defined as follows.

For all F ∈ F+,

GEε(F ) =

∫ ∞

0

(
n(F )y
|F |

)ε

− 1

ε2 − ε

1

n(F )
dF (y)for ε 6= 0, 1.

7We denote by � and ∼ the asymmetric and symmetric parts of <.

8We adopt the convention that 0 ln(0) = 0.
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Researchers are sometimes interested in decomposable inequality indices. Decomposable

indices allow us to attribute total inequality to different factors. In particular, decompos-

able indices allow us to decompose total inequality into inequality between subsocieties and

inequality within subsocieties. Bourguignon [7] and Foster [15] used the following version

of decomposability in their characterizations of the Theil index.

Definition 1 [TD] We say that inequality index I is Theil-decomposable if for any two

societies F and G,

I(F + G) =
|F |

|F + G|
I(F ) +

|G|

|F + G|
I(G) + I(F + G). (1)

The first two terms of the right hand side of (1) represent the inequality within F and

G. This inequality is the income-weighted average of the inequality of the two subsocieties

as measured by I. The last term of (1) represents the inequality between F and G, and is

the inequality that would result if there was no inequality in either subsociety.

Note that Theil decomposability is a cardinal axiom. Nevertheless, it has very strong

ordinal implications. In this paper we identify one of these ordinal implications and, together

with other ordinal axioms, use them to characterize the Theil inequality ordering.

4 Axioms and the main result

The first two axioms embody the idea that we are interested in relative measures of income

inequality.

Definition 2 [RI] We say that < satisfies replication invariance if for all α > 0, and for all

societies F , we have αF ∼ F .

Definition 3 [HOM] We say that < satisfies homogeneity if for all α > 0, and for all

societies F , we have F(α) ∼ F .
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Homogeneity states that only the relative distribution of income determines inequality.

In other words, one does not need to know the units in which income is measured (dollars,

euros, etc.) in each society to determine whether one society has a more or less equal

distribution than another.9 Replication invariance states that if we replicate a society by

multiplying each individual by a fixed positive constant, then inequality remains unaffected.

It is not the absolute number of people who have any given income level that matters, but

their proportion in the population. It is easy to check that all the orderings listed in the

previous section satisfy homogeneity and replication invariance.

The previous two axioms dictate that a particular change in the society does not affect

its income inequality. The next axiom, on the other hand, dictates that other changes do

have a certain effect. In fact, it is the only axiom that provides circumstances under which

one society is more unequal than another.

Definition 4 [SD] We say that < satisfies strong directedness if for all two-income-group

societies F = n1 · 1[y1,∞) + n2 · 1[y2,∞), where y1 < y2, and n1, n2 > 0,

n1 · 1[y1,∞) + n2 · 1[y2,∞) � n(F ) · 1[|F |/n(F ),∞)

Strong directedness is a stronger version of Foster [15]’s directedness. According to this

axiom, if one divides an egalitarian society into two income groups by transferring income

from some individuals to others, one obtains a new society with a more unequal distribution

of income. It is easy to check that all the indices listed in the previous section represent

orderings that satisfy strong directedness.

The next axiom is an ordinal implication of Theil-Decomposability.

Definition 5 [IND] We say that < satisfies independence, if for all two societies F1 and F2

9A related property is the unit-consistency axiom introduced by Zheng [32]. It guarantees that, as long

as income is measured in the same unit in all societies, inequality rankings are independent of this unit. We

don’t know the extent to which substituting this weaker axiom for Homogeneity would affect our results.

Examples of unit-consistent measures may be found in Zheng [32, 33] and del Rio and Alonso-Villar [21].
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such that n(F1) = n(F2) and |F1| = |F2|, and for all generalized societies F ,

F1 < F2 ⇔ F1 + F < F2 + F.

Independence is essentially what is known as subgroup consistency, which is closely related

to the notion of aggregativity of an index (see Shorrocks [24, 25]). It says that if a given

society is composed of two regions, and one of its regions’ income becomes more unequally

distributed, then the income distribution of the whole society becomes more unequal as well.

The satisfaction of this axiom justifies the application of distributive policies in subregions in

order to obtain results in the whole region. To illustrate, in order to reduce income inequality

in Asia, one would want to apply a policy that reduces inequality in India. But this would

be justified only if our measure of inequality satisfies IND. Otherwise, it may well be the case

that by reducing inequality in India we end up increasing inequality in Asia. An immediate

consequence of Shorrocks [24, 25] results is that many indices, including the Gini index, fail

to satisfy Independence.

As mentioned above, IND is an ordinal implication of Theil-Decomposability. To see

this, let F1, F2 ∈ F be two societies such that |F1| = |F2| and n(F1) = n(F2), and let F ∈ F

be another society. Also, let α = |F1|
|F1+F |

= |F2|
|F2+F |

> 0. Then, if I is a Theil-Decomposable

index,

I(F1 + F ) − I(F2 + F ) = αI(F1) + I(F1 + F ) − αI(F2) − I(F2 + F )

= α(I(F1) − I(F2)),

since F1 = F2. Hence, I represents an ordering that satisfies IND.

The next axiom is another ordinal implication of Theil-decomposability.

Definition 6 [DEC] We say that < satisfies ordinal decomposability if for all two societies

F1, F2, such that |F1| = |F2|, and for any generalized society F ,

F1 + F < F2 + F ⇒ F1 + F < F2 + F. (2)
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Ordinal decomposability states the following. Suppose we want to compare two societies,

F1+F and F2+F , in terms of income distribution. These two societies may not have the same

population but they do have the same total income. Further, suppose that these two societies

share a common subsociety, F . That is, their intersection is not empty. To illustrate, think

of Russia, which belongs both to Europe and to Asia, and assume that Europe and Asia have

the same total income. Ordinal decomposability dictates that whether or not one society

is more unequal than the other is independent of the income distribution in the common

subsociety. Continuing with our example, DEC states that whether or not Europe has a more

unequal distribution than Asia is independent of how income is distributed within Russia.

In particular, it is enough to know whether Europe would have a more unequal distribution

than Asia if Russia’s income was equally distributed among Russia’s population.

This axiom suggests that in some circumstances one could identify and isolate the in-

equality within a subsociety from the inequality of the whole society. To see this, note that

for any F , the difference between society (F1 + F ) and society (F1 + F ) is that in the first

society the inequality within F has been eliminated while in the second it has not. Therefore

the requirement (2) in DEC suggests that income inequality in (F1 + F ) consists of the in-

equality in (F1 +F ) and of a term that depends only on the inequality within F and on |F1|.

This kind of income dependent decomposability is much weaker than Theil Decomposability,

but turns out to be sufficient, together with IND and the other axioms, to imply it.

As mentioned above, DEC is weaker than Theil-Decomposability. To see this, let F1, F2, F ∈

F , such that |F1| = |F2|, and let α = |F1|
|F1+F |

= |F2|
|F2+F |

. Assume that the index I satisfies TD.

Then,

(F1 + F ) < (F2 + F ) ⇔

αI(F1) + (1 − α)I(F ) + I(F1 + F ) ≥ αI(F2) + (1 − α)I(F ) + I(F2 + F ) ⇔

αI(F1) + (1 − α)I(F ) + I(F1 + F ) ≥ αI(F2) + (1 − α)I(F ) + I(F2 + F ) ⇔

(F1 + F ) < (F2 + F )

which means that DEC is satisfied.
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The reader may wonder what the implications are of replacing the condition |F1| = |F2| in

the definition of DEC with the dual condition n(F1) = n(F2). In that case we would obtain a

population dependent decomposability axiom. As it turns out, among the generalized entropy

indices, only the second Theil measure, T0, satisfies this new axiom. Therefore, by restricting

attention to the class of finite population societies, this axiom along with the other axioms

used in Shorrocks [25] fully characterize T0. A modification of our proof, however, would not

suffice to obtain a characterization of this index in the larger class that we consider in this

paper. The reason is that our proof, in particular Proposition 2, crucially exploits the fact

that there are societies with zero per-capita income groups, and the second Theil index is

not defined for such societies.

The last axiom is a technical but standard continuity requirement that states that “simi-

lar” societies have “similar” levels of income inequality. For any function F ∈ F , its L1-norm

is defined by ‖F‖ =
∫∞

0
|F (y)| dy. We say that the sequence {Fk} converges to F , denoted

Fk → F , if ‖Fk − F‖ → 0.

Definition 7 [C] The inequality ordering < satisfies continuity (in the L1-norm ) if for any

sequence of pairs of societies, {Fk, Gk} with Fk < Gk for all k and Fk → F and Gk → G, we

have F < G.

Needless to say, this axiom is weaker than directly assuming that < is represented by a

continuous index.

We are now ready to state our main result.

Theorem 1 An inequality ordering defined on F satisfies homogeneity, replication invari-

ance, independence, ordinal decomposability, strong directedness, and continuity if and only

if it can be represented by the Theil inequality index.
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5 Proof of Theorem 1

It is easy to check that the Theil ordering satisfies HOM, RI, SD, and C. It is well known

that the Theil index satisfies Theil-Decomposability. Therefore it satisfies IND and DEC as

well.

Now, let < be an inequality ordering on F that satisfies homogeneity, replication invari-

ance, independence, ordinal decomposability, strong directedness, and continuity. We will

show that is represented by the Theil index.

We say that general society S is a simple society if it is of the form

S =
K∑

k=1

nk · 1[yk,∞)

where 0 ≤ y1 < · · · < yK . Note that a simple society is a proper society if nkyk > 0 for

some k. Denote by FS ⊂ F the class of simple, proper societies. We shall first show that

the only ordering that satisfies the axioms on FS is the Theil ordering. We will later extend

this result to the whole class F of proper societies.

Let S0 = 1[1,∞) be the society with population mass 1 and a uniformly distributed income

of one, and let S1/2 = 1/2 · 1[0,∞) + 1/2 · 1[2,∞) be the society with population mass 1, in

which half of the population has income 0, and the other half has income 2. Note that S1/2

has income 1. Also note that by SD, S1/2 � S0.

Lemma 1 All societies where total income is equally distributed among the population have

the same degree of income inequality. Further, for all societies S ∈ FS, S < S0.

Proof. Let F = n · 1[y,∞) be a society with equally distributed income. By HOM, RI,

F ∼ 1
n
F(1/y) = 1[1,∞) = S0.

Now let S =
∑K

k=1 nk · 1[yk,∞). We will use induction to show that S < S0. If K = 1,

then, by the previous step S ∼ S0. Assume that result holds for K = m ≥ 1, and let now

K = m + 1. By SD,

nK−1 · 1[yK−1,∞) + nK · 1[yK ,∞) < (nK−1 + nK) · 1[y,∞)
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where y is the level of income that satisfies (nK−1 + nK)y = nK−1yK−1 + nKyK . If m = 2,

by the previous step we are done. Otherwise, if m > 2, by IND,

K∑

k=1

nk · 1[yk,∞) <

K−2∑

k=1

nk · 1[yk,∞) + (nK−1 + nK) · 1[y,∞)

By the induction hypothesis,

K−2∑

k=1

nk · 1[yk,∞) + (nK−1 + nK) · 1[y,∞) < S0.

Q.E.D.

Lemma 2 Let S ′ ∈ FS be a society with population 1 and income 1 such that S ′ � S0. If

0 ≤ α < β < 1, then βS ′ + (1 − β)S0 � αS ′ + (1 − α)S0.

Proof. By RI, (β − α)S ′ � (β − α)S0. By IND,

αS ′ + (β − α)S ′ + (1 − β)S0 � αS ′ + (β − α)S0 + (1 − β)S0,

which can be written as, βS ′ + (1 − β)S0 � αS ′ + (1 − α)S0. Q.E.D.

Lemma 3 Let S ′ ∈ FS be a society with population 1 and income 1 such that S ′ � S0.

Then, for any society S ∈ FS such that S ′ < S < S0, there is a unique α∗ ∈ [0, 1] such that

S ∼ α∗S ′ + (1 − α∗)S0

Proof. By C, the sets {G : G < S} and {G : S < G} are closed in F . Consequently, the

sets {α ∈ [0, 1] : αS ′ + (1 − α)S0 < S} and {α ∈ [0, 1] : S < αS ′ + (1 − α)S0} are closed in

R. Since S ′ < S < S0, they are not empty. Since < is complete, their union is [0, 1].

Therefore, since the unit interval is connected, the intersection of the two sets is not empty.

By Lemma 2, this intersection must contain a single element. This single element is the α∗

we are looking for. Q.E.D.

Lemma 4 For any society S ∈ FS such that |S| = n(S) = 1, there is a unique α∗ ≥ 0 such

that S + α∗S0 ∼ S0 + α∗S1/2.
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Proof. If S1/2 < S < S0, then by Lemma 3, and since S1/2 � S0, there is a unique α∗ ∈ [0, 1]

such that S ∼ α∗S1/2 + (1 − α∗)S0. Then, by IND,

S + α∗S0 ∼ α∗S1/2 + (1 − α∗)S0 + α∗S0

= α∗S1/2 + S0.

If, on the other hand, S � S1/2, by Lemma 3 there is a unique β∗ ∈ [0, 1] such that

β∗S + (1 − β∗)S0 ∼ S1/2. Since S1/2 � S0, β∗ > 0. Then,

S + (1−β∗)
β∗ S0 ∼ 1

β∗S1/2 by RI

S + (1−β∗)
β∗ S0 + S0 ∼ 1

β∗S1/2 + S0 by IND

S + 1
β∗S0 ∼ 1

β∗S1/2 + S0

Therefore, 1
β∗ is the α∗ we are looking for. Q.E.D.

Lemma 4 allows us to define an index r : FS→R by

r(S) = α,

where α is the unique number that satisfies Ŝ + αS0 ∼ S0 + αS1/2, and Ŝ is the society that

is obtained from S by normalizing its population and income to 1.

Lemma 5 The index r represents the inequality order < on FS.

Proof. Let S and S ′ be two societies in FS and assume that S ′ < S. By RI and HOM we

can assume that |S| = |S ′| = 1 and n(S) = n(S ′) = 1. Let α and α′ be defined by

S + αS0 ∼ S0 + αS1/2 (3)

S ′ + α′S0 ∼ S0 + α′S1/2. (4)

We need to show that α′ ≥ α. Assume by contradiction that α > α′. Then,

S ′ + αS0 < S + αS0 by IND

∼ S0 + αS1/2 by (3)

= S0 + α′S1/2 + (α − α′)S1/2

� S0 + α′S1/2 + (α − α′)S0 by IND and S1/2 � S0,

∼ S ′ + α′S0 + (α − α′)S0 by (4) and IND

= S ′ + αS0
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which cannot be true. Q.E.D.

The next proposition implies that the index r satisfies Theil-Decomposability.

Proposition 1 Let S and S ′ be two simple societies such that S ∈ FS. Then

r(S + S ′) =
|S|

|S + S ′|
r(S) + r

(
S + S ′

)

Proof. Let S and S ′ be two simple societies with populations n and m, respectively. By RI

and HOM, we can assume without loss of generality that n + m = 1, and |S + S ′| = 1. Let

γ = r(S + S ′) and α = r(S). Then, by definition of r,

(
S + S ′

)
+ γS0 ∼ S0 + γS1/2 (5)

Ŝ + αS0 ∼ S0 + αS1/2. (6)

where Ŝ is the society that is obtained from S by normalizing its population and income so

that they are both equal to 1. We need to show that

(S + S ′) + (|S|α + γ)S0 ∼ S0 + (|S|α + γ)S1/2. (7)

Choose k ∈ N such that k > 1 + α |S|. Denote S∗
1/2 = n

2
· 1[0,∞) + n

2
· 1

[
2|S|

n
,∞)

. This society

has population n and income |S|. It follows from (6), using RI and HOM, that

S + αS ∼ S + αS∗
1/2. (8)

Adding (k − 1)(S0 + γS1/2) to both sides of Equation (5), we obtain

S +

Z1︷ ︸︸ ︷
S ′ + γS0 + (k − 1)(S0 + γS1/2) ∼ k(S0 + γS1/2) by IND

∼ k
|S|

(S + γS∗
1/2) by HOM and RI

= S +

Z2︷ ︸︸ ︷
k

|S|
((1 −

|S|

k
)

︸ ︷︷ ︸
>0

S + γS∗
1/2)
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Note that since |S| < 1 and α ≥ 0, our choice of k implies that |S| /k < 1, and therefore

subsociety Z2 is well-defined. Since |Z1| = |Z2| = |S ′| + kγ + (k − 1), by DEC,

S +

Z1︷ ︸︸ ︷
S ′ + γS0 + (k − 1)(S0 + γS1/2) ∼ S +

Z2︷ ︸︸ ︷
k

|S|
((1 −

|S|

k
)S + γS∗

1/2) .

Rewriting the right hand side term,

S + S ′ + γS0 + (k − 1)(S0 + γS1/2) ∼ S + αS + k
|S|

((1 −
(1 + α)|S|

k
)

︸ ︷︷ ︸
>0

S + γS∗
1/2)

∼ S + αS∗
1/2 + k

|S|
((1 − (1+α)|S|

k
)S + γS∗

1/2)

∼ |S| (S0 + αS1/2) + (k − 1 − α |S|︸ ︷︷ ︸
>0

)S0 + kγS1/2

= S0 + (α |S| + γ) S1/2 + (k − (1 + α)|S|)S0 + (k − 1) γS1/2

where the second line follows from (8) and IND, and the third line from HOM and RI. On

the other hand,

S + S ′ + γS0 + (k − 1)(S0 + γS1/2) = S + S ′ + (α |S| + γ)S0 + (k − 1 − α |S|) S0 + (k − 1)γS1/2.

As a result, denoting k∗ = (k − 1 − α |S|), we obtain

S+S ′+(α |S|+γ)S0 +
(
k∗S0 + (k − 1)γS1/2

)
∼ S0 +(α |S| + γ) S1/2 +

(
k∗S0 + (k − 1)γS1/2

)

Since S + S ′ + (α |S|+ γ)S0 and S0 + (α |S| + γ) S1/2 have the same population and income,

we can apply IND and obtain

S + S ′ + (α |S| + γ)S0 ∼ S0 + (α |S| + γ) S1/2,

which is what we wanted to prove. Q.E.D.

Corollary 1 Let S1, . . . , SK be K societies in FS. Also let S =
∑K

k=1 Sk. Then

r (S) =
K∑

k=1

|Sk|

|S|
r (Sk) + r

(
K∑

k=1

Sk

)
.
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Proof. The proof is by induction and is left to the reader. Q.E.D.

We now define a subclass of simple societies. For each α ∈ (0, 1), let Sα = α · 1[0,∞) +

(1 − α) · 1[1/(1−α),∞) be the society with population mass 1 in which a proportion α of the

population has income 0, and the proportion (1−α) of the population has income 1/(1−α).

The next proposition shows that r, when applied to these societies, induces a well-known

function.

Proposition 2 For all α ∈ (0, 1], r(S1−α) = − log2 α.

Proof. Let h : (0, 1] → R be defined by h(α) = r(S1−α). By definition of r,

h(α) ≥ 0 for all α ∈ (0, 1]. (9)

Also,

h(1/2) = r(S1/2) = 1. (10)

We will now show that

h(pq) = h(p) + h(q) for all p, q ∈ (0, 1]. (11)

To see this, note that

S1−pq = (1 − pq) · 1[0,∞) + pq · 1[ 1

pq
,∞)

= (1 − q) · 1[0,∞) + q (1 − p) · 1[0,∞) + pq · 1[ 1

pq
,∞)

=
(
q (1 − p) · 1[0,∞) + pq · 1[1/(pq),∞)

)
+ (1 − q) · 1[0,∞).

Therefore, by Proposition 1, and using HOM and RI,

r(S1−pq) = r
(
q (1 − p) · 1[0,∞) + pq · 1[1/(pq),∞)

)
+ r

(
q · 1[1/q,∞) + (1 − q) · 1[0,∞)

)

= r
(
(1 − p) · 1[0,∞) + p · 1[1/p,∞)

)
+ r

(
q · 1[1/q,∞) + (1 − q) · 1[0,∞)

)

= r (S1−p) + r(S1−q),

which shows that (11) holds. It is known that the only function on (0, 1] that satisfies (9-11)

is − log2.
10 Q.E.D.

10See Theorem 0.2.5 in Aczél and Daróczy [3].
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Proposition 3 The index r is a positive multiple of the Theil index.

Proof. Let S =
∑K

k=1 nk · 1[yk,∞) ∈ FS be a society where 0 ≤ y1 < · · · < yK . Assume

without loss of generality that nk > 0 for k = 1, . . . , K. We need to show that r(S) = aT (S)

for some a > 0. If K = 1, the result is obvious. So assume K ≥ 2. By RI we can assume

without loss of generality that n (S) = 1. Similarly, by HOM we can assume without loss

of generality that
∑K

k=1 yk = 1. Therefore |S|2 < |S| =
∑K

k=1 nkyk < 1. Also, yk|S| < 1

for k = 1, . . . K. We need to show that r(S) is a multiple of T (S), which in the case of our

simple society, can be written as

T (S) =
K∑

k=1

nkyk

|S|

(
ln

yk

|S|

)
.

Assume first that y1 > 0, and define

Sk = nk(1 − yk|S|) · 1[0,∞) + nkyk|S| · 1[ 1

|S|
,∞).

Note that Sk = nk· 1[yk,∞) and therefore
∑K

k=1 Sk = S. Therefore, by Corollary 1,

r(
K∑

k=1

Sk) =
K∑

k=1

nkyk

|S|
r
(
Sk
)

+ r(S).

which can be written as

r(S) = r(
K∑

k=1

Sk) −
K∑

k=1

nkyk

|S|
r
(
Sk
)
.

Note that by RI, and HOM, for all k

Sk ∼ (1 − yk|S|) · 1[0,∞) + yk|S| · 1[ 1

|S|
,∞)

∼ (1 − yk|S|) · 1[0,∞) + yk|S| · 1[ 1

yk|S|
,∞) = S1−yk|S|.

Also, by HOM,

K∑

k=1

Sk ∼

K∑

k=1

(
nk(1 − yk|S|) · 1[0,∞) + nkyk|S| · 1[ 1

|S|2
,∞)

)

=

(
K∑

k=1

nk −

K∑

k=1

nkyk|S|)

)
· 1[0,∞) +

K∑

k=1

nkyk|S| · 1[ 1

|S|2
,∞)

=
(
1 − |S|2

)
· 1[0,∞) + |S|2 · 1[ 1

|S|2
,∞) = S1−|S|2 .
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Therefore

r(S) = r(S1−|S|2) −
K∑

k=1

nkyk

|S|
r
(
S1−yk|S|

)

= log2

1

|S|2
+

K∑

k=1

nkyk

|S|
log2 yk|S|

=
K∑

k=1

nkyk

|S|

(
log2

1

|S|2
+ log2 yk|S|

)

=
K∑

k=1

nkyk

|S|

(
log2

yk

|S|

)

=
T (S)

ln 2
.

Assume now that y1 = 0, so that S = n1 ·1[0,∞)+
∑K

k=2 nk ·1[yk,∞). Namely, there is a positive

mass of agents with 0 income. Denote S ′ =
∑K

k=2 nk · 1[yk,∞). Then, by Proposition 1,

r(S) = r(S ′) + r(S ′ + n1 · 1[0,∞)).

But, using HOM,

S ′ + n1 · 1[0,∞) = n1 · 1[0,∞) + (1 − n1) · 1[|S|/(1−n1),∞)

∼ n1 · 1[0,∞) + (1 − n1) · 1[1/(1−n1),∞)

= Sn1

where the second line follows from HOM. Then, by Proposition 2,

r(S ′ + n1 · 1[0,∞)) = r(Sn1
)

= − log2(1 − n1).

Consequently,

r(S) = r(S ′) − log2(1 − n1)

=
T (S ′)

ln 2
− log2(1 − n1)

=
T (S)

ln 2
.
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We have shown that the only ordering on FS that satisfies the axioms is the Theil ordering.

We now extend this result to the whole class F . Let < be the Theil ordering and let <∗ be an

order on F that satisfies the forgoing axioms. We must show that <∗ and < are one and the

same order. Let F,G ∈ F be two societies such that F < G. We must show that F <∗ G. In

order to do so, it is enough to find a sequence {Fn, Gn} of pairs of simple societies such that

for all n, Fn, Gn ∈ FS, Fn < F and G < Gn, and such that Fn → F and Gn → G. To see

why, note that once such sequence is found, we will have, by transitivity of <, that Fn < Gn

for all n. Since <∗ satisfies the axioms on FS, by Theorem 1 it must coincide with < there.

Consequently, we will have found a sequence of pairs {Fn, Gn} such that that Fn → F and

Gn → G, with Fn <∗ Gn for all n. By L1-continuity we will have F <∗ G, the desired result.

We now find the required sequence. Let y ∈ arg max F (y) ∩ arg max G(y) be a common

upper bound to the individual income levels in societies F and G. For each n ∈ N, partition

the interval [0, y) into intervals of equal length of the type [yn
k−1, y

n
k ) := [(k − 1)y/n, ky/n).

Note that the length of the intervals is y/n. In order to build Fn, for each k = 1, . . . n, we

will regressively redistribute the income of the agents in the income bracket (yn
k−1, y

n
k ], in a

way so that some agents there will be impoverished and end up with yn
k−1, and the remaining

agents will be enriched and end up with yn
k . Formally, for k = 1, . . . n, let pn

k be implicitly

defined by

pn
ky

n
k−1 +

(
F (yn

k ) − F
(
yn

k−1

)
− pn

k

)
yn

k =

∫ yn
k

yn
k−1

y dF. (12)

The value pn
k represents the mass of agents that are impoverished, and

(
F (yn

k ) − F
(
yn

k−1

)
− pn

k

)

is the mass of people that are enriched. Equation (12) ensures that the total income of the

agents in the original income bracket (yn
k−1, y

n
k ] remains the same. Define now,

Fn = (F (yn
0 ) + pn

1 ) · 1[yn
0

,∞) +
n∑

k=1

(
F (yn

k ) + pn
k+1 − F

(
yn

k−1

)
− pn

k

)
· 1[yn

k
,∞).

Figure 1 illustrates the construction of Fn. As explained above, Fn is the society that

is obtained from F by, for k = 1, . . . n, redistributing the income of the agents in the

income bracket (yn
k−1, y

n
k ] among them, assigning income yn

k−1 to pn
k of them and income yn

k

to the remaining
(
F (yn

k ) − F
(
yn

k−1

)
− pn

k

)
. By construction, F second order stochastically
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dominates Fn and since the Theil index is consistent with second order stochastic ordering,

we have that Fn < F .

y

F@yD,Fn@yD

Figure 1: Societies F and Fn

The construction of the societies Gn is similar. In order to do so, we will progressively

redistribute the income of the income bracket [yn
k−1, y

n
k ) so that all agents there end up with

the same income level. Formally, let

yn
k =






∫ yn
k

yn
k−1

y dG

G(yn
k
)−G(yn

k−1
)

if G(yn
k ) > G(yn

k−1)

(k − 1/2)y/n if G(yn
k ) = G(yn

k−1)

be the mean income of the agents in the income bracket [yn
k−1, y

n
k ) (if there are no agents in

this income bracket, the mean income is arbitrarily defined as the midpoint of the interval).

Letting, yn
n+1 = y, Define

Gn = G(0) · 1[0,∞) +
n∑

k=1

(
G(yn

k ) − G(yn
k−1)

)
· 1[yn

k
,∞).

Figure 2 illustrates the construction of Gn. The simple society Gn is obtained from G

by redistributing equally the total income of each income bracket [yn
k−1, y

n
k ). (If there are

no agents in that bracket, Gn and G coincide there). By construction, Gn second-order

stochastically dominates G. It is known that the Theil index is consistent with second-order

stochastic dominance, therefore, G < Gn.
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y

G@yD,Gn@yD

Figure 2: Societies G and Gn

It remains to show that Fn → F and Gn → G. In order to show Fn → F , by the

bounded convergence theorem, it is enough to prove that Fn converges to F pointwise almost

everywhere. Since F is non-decreasing, it is continuous almost everywhere. Therefore, it is

enough to show that Fn(y) converges to F (y) for every point at which F is continuous. Let

y ∈ [0, y) one such point, and for any n ∈ N, let [yn
k−1, y

n
k ) be the interval that contains y.

Note that since pn
k ≤ F (yn

k ) − F (yn
k−1), F (yn

k−1) ≤ Fn(y) = F (yn
k−1) + pn

k ≤ F (yn
k ). Since F

is non-decreasing, we also have F (yn
k−1) ≤ F (y) ≤ F (yn

k ). Consequently, |Fn(y) − F (y)| ≤
∣∣F (yn

k ) − F (yn
k−1)

∣∣. Now, let ε > 0. We need to show that there is n0 such that for all

n > n0, |Fn(y) − F (y)| ≤ ε. Since F is continuous at y, there is δ > 0 such that |y − y′| < δ

implies |F (y) − F (y′)| < ε/2. Since
∣∣yn

k−1 − yn
k

∣∣ = y/n → 0, we can choose n0 such that
∣∣yn

k−1 − yn
k

∣∣ < δ for all n > n0. Since max
{
|y − yn

k | ,
∣∣y − yn

k−1

∣∣} ≤
∣∣yn

k−1 − yn
k

∣∣, we have that

for all n > n0,

|Fn(y) − F (y)| ≤
∣∣F (yn

k ) − F (yn
k−1)

∣∣

≤ |F (yn
k ) − F (y)| +

∣∣F (y) − F (yn
k−1)

∣∣

≤ ε

which is what we wanted to show. The proof that Gn → G is analogous and is left to the

reader. Q.E.D.
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6 Conclusions

We have axiomatically characterized the Theil ordering of income inequality. In addition

to the uncontroversial axioms of anonymity, homogeneity, replication invariance, strong di-

rectedness and a standard continuity property, we appealed to an independence and to a

decomposability axioms. These two axioms are ordinal implications of Theil Decomposabil-

ity, the central axiom in Bourguignon [7] and Foster [15] in their characterization of the Theil

index. To the best of our knowledge, this is the first fully ordinal characterization of this

index.
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